
1

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY - DEPARTMENT OF CSE

Experiment No: 1

Aim: - To implement functions of Dictionary using Hashing (division method, Multiplication

method, Universal hashing)

Description: -

 A dictionary is a container of elements from a totally ordered universe that supports the basic

operations of inserting/deleting elements and searching for a given element. hash tables provide an

efficient implicit realization of a dictionary.

Division Method

 A key is mapped into one of h slots using the function

 H(k) = k mod h

o h should not be a power of 2, since if h = 2p, then h(k) is just the p lowest order bits of k

o Good values for h primes not too close to exact powers of 2.

Multiplication Method

There are two steps:

1. Multiply the key k by a constant A in the range 0 < A < 1 and extract the fractional part of kA

2. Multiply this fractional part by h and take the floor.

 H(k) = h(kA mod 1) A ≈ (√5 - 1)/2

Universal Hashing

This involves choosing a hash function randomly in a way that is independent of the keys that

are actually going to be stored. We select the hash function at random from a carefully designed class

of functions.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Algorithm:

h : the size of hash table

index : the index value of hash table returned by functions

A : is constant whose value is ≈ (√5 - 1)/2

H[]: the array which indicates the hash table

DIVISION_HASH_FUNCTION(K)

1. index = K mod h

2. Return index

MULTIPLICATION_HASH_FUNCTION (K)

1. j = K*A mod 1

2. index = floor(h * j)

3. Return (index)

INSERT_ HASH_TABLE(K)

1. flag = false

2. Index = HASH_FUNCTION(K)

3. If(K = H[index]) then

3.1.Print “ the element exist in the table”

3.2.Exit

4. Else

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

4.1.i = index + 1 mod h

4.2.while (i ≠ index) and (not flag) do

4.2.1. if (H[i] = NULL) or (H[i] < 0) then

4.2.1.1.H[i] = K

4.2.1.2.flag = true

4.2.2. Else

4.2.2.1.if (H[i] = K) then

4.2.2.1.1. flag = true

4.2.2.1.2. Exit

4.2.2.2.Else

4.2.2.2.1. i = i mod h

4.2.2.3.End If

4.2.3. End if

4.3.End while

4.4.If (flag = false) and (i = index) then

4.4.1. Print “ the table is overflow”

4.4.2. Exit

4.5.End if

5. End if

6. Stop

DELETE_ HASH_TABLE(K)

1. index = HASH_FUNCTION(K)

2. If(K = H[index]) then

2.1.H[K] = NULL

2.2.Exit

3. Else

3.1.i = index + 1 mod h

3.2.while (i ≠ index) and H[i] ≠ NULL do

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

3.2.1. if (H[i] = K) then

3.2.1.1.H[i] = NULL

3.2.1.2.exit

3.2.2. Else

3.2.2.1.1. i = i + 1

3.2.2.1.2. i = i mod h

3.2.3. End if

3.3.End while

4. End if

5. Stop

SEARCH_HASH(K)

1. hashval = HASH_FUNCTION(K)

2. while (H[hashval] ≠ null) do

2.1.if (H[hashval] = K) then

2.1.1. Return H[hashval]

2.2.End if

2.3.hashval = hashval + 1

2.4.hashval = hashval % h

3. End while

4. Return null

5. Stop

Sample INPUT:

Enter maximum size of hash table: 13

1. Insert

2. Delete

3. Search

4. Exit

Enter your choice : 1

The elements inserted in the order are

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

12 , 17, 21, 28, 35, 40, 43, 52, 66, 69

Enter your choice : 3

Enter element to be searched :

43

Enter your choice : 2

Enter element to be deleted :

35

Expected output:

<< Table >>

 0 : 52

1 : 40

2 : 28

3 : 66

4 : 17

5 : 43

6 : 69

8 : 21

9 : 35

12 : 12

43 not found

35 deleted

Conclusion: Student get the knowledge on creating the Dictionary which incorporate to develop the

Real World Applications like GPS and WPS .it attains the PO1,PO2, PO3, PSO1,PSO2 and CO1

Viva Questions:

1. What is hashing?

2. What is hash function?

3. Define Collision?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

4. What is a good hash function?

5. What are the different collision resolution techniques?

6. What are the different closed hashing techniques?

7. Define linear probing?

8. Define quadratic probing?

9. Define separate chaining?

10. Define universal hashing?

11. What are the drawbacks in separate chaining?

12. What is dictionary?

13. What are the applications of dictionary?

14. What are the drawbacks in linear probing?

15. Define load factor?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 2

Aim: - To perform various operations i.e, insertions and deletions on AVL trees

Description: -

 An AVL tree is another balanced binary search tree. Named after their inventors, Adelson-

Velskii and Landis, they were the first dynamically balanced trees to be proposed. Like red-black

trees, they are not perfectly balanced, but pairs of sub-trees differ in height by at most 1, maintaining

an O(logn) search time. Addition and deletion operations also take O(logn) time. The worst case

height of an AVL tree with n nodes is 1.44log n.

Definition of an AVL tree

An AVL tree is a binary search tree which has the following properties:

1. The sub-trees of every node differ in height by at most one.

2. Every sub-tree is an AVL tree.

Thus a balanced binary tree (AVL tree) is a Binary Tree in which heights of the two

subtrees of every mode never differ by more than 1. The balance of a node in a Binary tree is defined

as the height of its left subtree minus height of its right subtree. Each node in a balanced Binary Tree

has a balance of 1, -1, or 0, depending on whether the height of its left subtree is greater than, less

than, or equal to the height of its right subtree.

Balance requirement for an AVL tree: the left and right sub-trees differ by at most 1 in height.

Insertion

Implementations of AVL tree insertion may be found in many textbooks: they rely on

adding an extra attribute, the balance factor to each node. This factor indicates whether

the tree is left heavy (the height of the left sub-tree is 1 greater than the right sub-tree),

balanced (both sub-trees are the same height) or right heavy (the height of the right subtree

is 1 greater than the left sub-tree). If the balance would be destroyed by an insertion, a rotation is

performed to correct the balance.AVL trees which remain balanced - and thus guarantee O(logn)

search times - in a dynamic environment. Or more importantly, since any tree can be re-balanced - but

at considerable cost - can be re-balanced in O(logn) time.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Algorithm:

COMPUTE_HEIGHT (ptr)

1. If ptr = NULL then // height of empty tree is zero

1.1.height = 0

1.2.Return (height)

2. Else

2.1.Lptr = ptr.lchild

2.2.Rptr = ptr.rchild

2.3.HL = COMPUTE_HEIGHT(Lptr)

2.4.HR = COMPUTE_HEIGHT(Rptr)

2.5.If HL ≤ HR then // maximum of left sub tree and right sub tree

2.5.1. height = 1 + HR

2.6.Else // HL > HR

2.6.1. height = 1 + HL

2.7.End if

3. Return (height) // return height of the tree

4. End if

5. Stop

ROTATION_LEFT_TO_LEFT (Pptr)

1. Aptr = Pptr.lchild // initialize the pointer to left child of pivot node P

2. Pptr.lchild = Aptr.rchild // set left child of P to right child of left child(A) of P

3. Aptr.rchild = Pptr // set P as right child for left child(A) of pivot P

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

4. Pptr.height = COMPUTE_HEIGHT(Pptr) // Recompute the height of P and A

5. Aptr.height = COMPUTE_HEIGHT(Aptr)

6. Pptr = Aptr // modify the pointer in the parent of pivot

7. Stop

ROTATION_RIGHT_TO_RIGHT (Pptr)

1. Bptr = Pptr.rchild // initialize the pointer to right child of pivot node P

2. Pptr.rchild = Bptr.lchild // set right child of P to left child of right child(B) of P

3. Bptr.lchild = Pptr // set P as left child for right child (B) of pivot P

4. Pptr.height = COMPUTE_HEIGHT(Pptr) //Recompute the height of P and B

5. Bptr.height = COMPUTE_HEIGHT(Bptr)

6. Pptr = Bptr // modify the pointer field in the parent of pivot node

7. Stop

ROTATION_LEFT_TO_RIGHT (Pptr)

1. Aptr = Pptr.lchild //initialize pointer to left child of pivot node (P)

2. ROTATION_RIGHT_TO_RIGHT(Aptr) // single rotation taking A as pivot node

3. ROTATION_LEFT_TO_LEFT(Pptr) // another single rotation taking P as pivot

4. Stop

ROTATION_RIGHT_TO_LEFT (Pptr)

1. Aptr = Pptr.Rchild // initialize pointer to right child of pivot node P

2. ROTATION_LEFT_TO_LEFT(Aptr) //single rotation taking A as pivot node

3. ROTATION_RIGHT_TO_RGHT(Pptr) // another single rotation taking P as pivot node

4. Stop

INSERT_AVLTREE(ROOT,NEW)

1. ptr = ROOT

2. If(ptr = NULL) // insertion into a null tree

2.1.ptr = NEW //create a new node

2.2.ptr.height = 1 //height of one node tree

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2.3.return //insertion is done

3. else

3.1.if (NEW.data < ptr.data) then

3.1.1. INSERT_AVLTREE(ptr.lchild, NEW)

3.1.2. Lptr = ptr.lchild

3.1.3. Rptr = ptr.rchild //right sub tree of ptr

3.1.4. If (Rptr = NULL) then // if right sub tree is empty

3.1.4.1.HR = 0

3.1.5. Else

3.1.5.1. HR = Rptr.height //height of the right sub tree

3.1.6. End if

3.1.7. HL = Lptr.height

3.1.8. bf = HL - HR

3.1.9. if (bf = 2) then // if left high

3.1.9.1.if (NEW.data < Lptr.Data) then // if insertion take place at left

 //of left child of pivot

3.1.9.1.1. ROTATION_LEFT_TO_LEFT(ptr)

3.1.9.2.Else // if insertion take place at right

 //of left child of pivot

3.1.9.2.1. ROTATION_LEFT_TO_RIGHT(ptr)

3.1.9.3.End if

3.1.9.4.ptr.height = COMPUTE_HEIGHT(ptr)

3.1.10. End if

3.2.End if

3.3.Else

3.3.1. if (NEW.data > ptr.data) then

3.3.1.1.INSERT_AVLTREE(ptr.rchild, NEW)

3.3.1.2.Lptr = ptr.lchild

3.3.1.3.Rptr = ptr.rchild

3.3.1.4.If (Lptr = NULL) then

3.3.1.4.1. HL = 0

3.3.1.5.Else

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

3.3.1.5.1. HL = Rptr.height

3.3.1.6.End if

3.3.1.7.HR = Lptr.heght

3.3.1.8.bf = HL - HR

3.3.1.9.if (bf = -2) then // if right high

3.3.1.9.1. if (NEW.data > Lptr.Data) then //if insertion take place at right

 //of right child of pivot

3.3.1.9.1.1.ROTATION_RIGHT_TO_RIGHT(ptr)

3.3.1.9.2. Else // if insertion take place at left

 //of right child of pivot

3.3.1.9.2.1.ROTATION_RIGHT_TO_LEFT(ptr)

3.3.1.9.3. End if

3.3.1.9.4. ptr.height = COMPUTE_HEIGHT(ptr)

3.3.1.10. End if

3.3.2. End if

3.3.3. Else

3.3.3.1.Print “ new.data is already exist in the tree”

3.3.4. End if

3.4.End if

4. End if

5. Stop

DELETE_AVLTREE(ROOT,ITEM)

1. if(ROOT = null) then

1.1. return null

2. else

2.1. if(ITEM < ROOT.data) then

2.1.1. root.left = DELETE_AVLTREE(ROOT.left, ITEM)

2.1.2. Lptr = ROOT.left

2.1.3. Rptr = ROOT.right

2.1.4. HL = Lptr.HEIGHT

2.1.5. HR = Rptr.HEIGHT

2.1.6. bf = HL – HR

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2.1.7. if(bf = -2) then

2.1.7.1. rrptr = Rptr.right

2.1.7.2. lrptr =Rptr.left

2.1.7.3. HL = lrptr.HEIGHT

2.1.7.4. HR = rrptr.HEIGHT

2.1.7.5. bf = HL – HR

2.1.7.6. if(bf = 1) then

2.1.7.6.1. ROOT = ROTATION_RIGHT_TO_LEFT(ROOT)

2.1.7.7. Else

2.1.7.7.1. ROOT =ROTATION_RIGHT_TO_RIGHT(ROOT)

2.1.7.8. End if

2.1.8. End if

2.2. End if

2.3. Else

2.3.1. if(ITEM > ROOT.data) then

2.3.1.1. ROOT.right = DELETE_AVLTREE(ROOT.right , ITEM)

2.3.1.2. Lptr = ROOT.left

2.3.1.3. Rptr = ROOT.right

2.3.1.4. HL = Lptr.HEIGHT

2.3.1.5. HR = Rptr.HEIGHT

2.3.1.6. bf = HL – HR

2.3.1.7. if(bf = 2) then // if left high

2.3.1.7.1. rlptr = Lptr.right

2.3.1.7.2. llptr =Lptr.left

2.3.1.7.3. HL = llptr.HEIGHT

2.3.1.7.4. HR = rlptr.HEIGHT

2.3.1.7.5. bf = HL – HR

2.3.1.7.6. if(bf = -1) then //left child is right high

2.3.1.7.6.1. ROOT = ROTATION_LEFT_TO_RIGHT(ROOT)

2.3.1.7.7. Else

2.3.1.7.7.1. ROOT =ROTATION_LEFT_TO_LEFT(ROOT)

2.3.1.7.8. End if

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2.3.1.8. End if

2.3.2. End if

2.3.3. Else

2.3.3.1. Ptr = ROOT

2.3.3.2. Lptr = ROOT.left

2.3.3.3. Rptr = ROOT.right

2.3.3.4. if(Lptr =null) and (Rptr = null) then

2.3.3.4.1. ROOT = null

2.3.3.5. Else

2.3.3.6. if(Lptr = null) then

2.3.3.6.1. root = Ptr.right

2.3.3.6.2. Ptr = null

2.3.3.7. Else

2.3.3.8. if(Rptr = null) then

2.3.3.8.1. ROOT = Ptr.left

2.3.3.8.2. Ptr = null

2.3.3.9. Else

2.3.3.9.1. ROOT.right = DELETE_MIN(Ptr.right, Ptr)

2.3.3.9.2. Lptr = ROOT.left

2.3.3.9.3. Rptr = ROOT.right

2.3.3.9.4. HL = Lptr.HEIGHT

2.3.3.9.5. HR = Rptr.HEIGHT

2.3.3.9.6. bf = HL – HR

2.3.3.9.6.1. if(bf = 2) then

2.3.3.9.6.2. rlptr = Lptr.right

2.3.3.9.6.3. llptr =Lptr.left

2.3.3.9.6.4. HL = llptr.HEIGHT

2.3.3.9.6.5. HR = rlptr.HEIGHT

2.3.3.9.6.6. bf = HL – HR

2.3.3.9.6.7. if(bf = -1) then

2.3.3.9.6.7.1. ROOT = ROTATION_LEFT_TO_RIGHT(ROOT)

2.3.3.9.6.8. Else

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2.3.3.9.6.8.1. ROOT =ROTATION_LEFT_TO_LEFT(ROOT)

2.3.3.9.6.9. End if

2.3.3.9.7. End if

2.3.3.10. End if

2.3.4. End if

2.4. End if

3. Return ROOT

4. Stop

DELETE_MIN (succ, ptr)

1. temp = succ

2. if (succ.left ≠ null) then

2.1. succ.left = DELETE_MIN (succ.left, ptr)

3. Else

3.1. temp = succ

3.2. ptr.data = succ.data

3.3. succ = succ.right

3.4. temp= null

4. end if

5. Return(succ)

6. Stop

Sample INPUT:

1. Insert

2. Delete

3. Search

4. Display

5. Exit

Enter your choice : 1

Enter element to be inserted in to AVL tree :

46 34 75 22 41 55 80 11 25 38 44 60 79 90 9 36 40 45 85 35

Enter your choice : 2

Enter element to be deleted from AVL tree : 75

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Enter your choice : 3

Enter element to be searched: 44

Enter your choice : 3

Enter element to be searched: 87

Enter your choice : 5

Expected output:

AVL Tree nodes after insertion (in order traversal):

9 11 22 25 34 35 36 38 40 41 44 45 46 55 60 75 79 80 85 90

AVL Tree nodes after deletion (in order traversal) :

9 11 22 25 34 35 36 38 40 41 44 45 46 55 60 79 80 85 90

44 found

87 not found

Conclusion: Student can understand and analyze the AVL trees for balancing the trees so that

increase the speed of insertion, deletion and searching of elements in the given list. It is attained to

PO1, PO2, PO3, PO4, PSO1 and CO2

Viva Questons:

1. What is AVL tree?

2. The time complexity of searching in AVL tree is?

3. The time complexity of insertion n AVL tree is ?

4. When to perform RIGHT- to - RIGHT rotation?

5. When to perform LEFT- to - LEFT rotation?

6. When to perform double RIGHT Rotation?

7. When to perform double LEFT Rotation?

8. Give maximum height of AVL tree with n nodes.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 3

Aim: - To perform various operations i.e., insertions and deletions on 2-3 trees.

Description: -

In computer science, a 2–3 tree is a tree data structure, where every node with children

(internal node) has either two children (2-node) and one data element or three children (3-nodes) and

two data elements. According to Knuth, "a B-tree of order 3 is a 2-3 tree

Algorithm:

1. The lookup operation

Recall that the lookup operation needs to determine whether key value k is in a 2-3 tree T. The lookup

operation for a 2-3 tree is very similar to the lookup operation for a binary-search tree. There are 2

base cases:

1. T is empty: return false

2. T is a leaf node: return true iff the key value in T is k

And there are 3 recursive cases:

1. k <= T.leftMax: look up k in T's left subtree

2. T.leftMax < k <= T.middleMax: look up k in T's middle subtree

3. T.middleMax < k: look up k in T's right subtree

It should be clear that the time for lookup is proportional to the height of the tree. The height of the

tree is O(log N) for N = the number of nodes in the tree. You may think this is a problem, since the

actual values are only at the leaves. However, the number of leaves is always greater than N/2 (i.e.,

more than half the nodes in the tree are leaves). So the time for lookup is also O(log M), where M is

the number of key values stored in the tree.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2.The insert operation

The goal of the insert operation is to insert key k into tree T, maintaining T's 2-3 tree properties.

Special cases are required for empty trees and for trees with just a single (leaf) node. So the form of

insert will be:

 if T is empty replace it with a single node containing k

 else if T is just 1 node m:

 (a) create a new leaf node n containing k

 (b) create a new internal node with m and n as its children,

 and with the appropriate values for leftMax and middleMax

 else call auxiliary method insert(T, k)

The auxiliary insert method is the recursive method that handles all but the 2 special cases; as for

binary-search trees, the first task of the auxiliary method is to find the (non-leaf) node that will be

the parentof the newly inserted node.

The auxiliary insert method performs the following steps to find node n, the parent of the new node:

 base case: T's children are leaves - n is found! (T will be the parent of the new node)

 recursive cases:

o k < T.leftMax: insert k into T's left subtree

o T.leftMax < k < T.middleMax, or T only has 2 children: insert k into T's middle

subtree

o k > T.middleMax and T has 3 children: insert k into T's right subtree

Once n is found, there are two cases, depending on whether n has room for a new child:

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Case 1: n has only 2 children

 Insert k as the appropriate child of n:

1. if k < n.leftMax, then make k n's left child (move the others over), and fix the values of

n.leftMax and n.middleMax. Note that all ancestors of n still have correct values for

their leftMax and middleMax fields (because the new value is not the "max" child of

n).

2. if k is between n.leftMax and n.middleMax, then make k n's middle child and fix the

value of n.middleMax. Again, no ancestors of n need to have their fields changed.

3. if k > n.middleMax, then make k n's right child and fix the leftMax or middleMax

fields of n's ancestors as needed.

Case 2: n already has 3 children

 Make k the appropriate new child of n, anyway (fixing the values of n.leftMax and/or

n.middleMax as needed). Now n has 4 children.

 Create a new internal node m. Give m n's two rightmost children and set the values of

m.leftMax and m.middleMax.

 Add m as the appropriate new child of n's parent (i.e., add m just to the right of n). If n's parent

had only 2 children, then stop creating new nodes, just fix the values of the leftMax and

middleMax fields of ancestors as needed. Otherwise, keep creating new nodes recursively up

the tree. If the root is given 4 children, then create a new node m as above, and create a new

root node with n and m as its children.

What is the time for insert? Finding node n (the parent of the new node) involves following a path

from the root to a parent of leaves. That path is O(height of tree) = O(log N), where N is the number

of nodes in the tree (recall that it is also log M, where M is the number of key values stored in the

tree).

Once node n is found, finishing the insert, in the worst case, involves adding new nodes and/or fixing

fields all the way back up from the leaf to the root, which is also O(log N).

So the total time is O(log N), which is also O(log M).

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

3.The delete operation

Deleting key k is similar to inserting: there is a special case when T is just a single (leaf) node

containing k (T is made empty); otherwise, the parent of the node to be deleted is found, then the tree

is fixed up if necessary so that it is still a 2-3 tree.

Once node n (the parent of the node to be deleted) is found, there are two cases, depending on how

many children n has:

case 1: n has 3 children

 Remove the child with value k, then fix n.leftMax, n.middleMax, and n's ancestors' leftMax

and middleMax fields if necessary.

case 2: n has only 2 children

 If n is the root of the tree, then remove the node containing k. Replace the root node with the

other child (so the final tree is just a single leaf node).

 If n has a left or right sibling with 3 kids, then:

o remove the node containing k

o "steal" one of the sibling's children

o fix n.leftMax, n.middleMax, and the leftMax and middleMax fields of n's sibling and

ancestors as needed.

 If n's sibling(s) have only 2 children, then:

o remove the node containing k

o make n's remaining child a child of n's sibling

o fix leftMax and middleMax fields of n's sibling as needed

o remove n as a child of its parent, using essentially the same two cases (depending on

how many children n's parent has) as those just discussed

The time for delete is similar to insert; the worst case involves one traversal down the tree to find n,

and another "traversal" up the tree, fixing leftMax and middleMax fields along the way (the traversal

up is really actions that happen after the recursive call to delete has finished).

So the total time is 2 * height-of-tree = O(log N).

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Sample INPUT:

1. Insert

2. Delete

3. Search

4. Display

5. Exit

Enter your choice : 1

Enter element to be inserted in to AVL tree :

46 34 75 22 41 55 80 11 25 38 44 60 79 90 9 36 40 45 85 35

Enter your choice : 2

Enter element to be deleted from AVL tree : 75

Enter your choice : 3

Enter element to be searched: 44

Enter your choice : 3

Enter element to be searched: 87

Enter your choice : 5

Conclusion: Student can understand and analyze the 2-3 trees for balancing the trees so that

increase the speed of insertion, deletion and searching of elements in the given list. it is attained to

PO1, PO2,PO3,PO4, PSO1 and CO2

Viva Questions:

1. What are 2-3 trees?

2. The time complexity of searching in 2-3 trees is?

3. The time complexity of insertion n 2-3 trees is?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 4

Aim: - To implement operations on binary heap.

Description: -

 A binary heap is a binary tree which has the following two properties:

Structural Property: A heap is a complete binary tree as left as possible.

Heap or Order property : Any node key is less than or equal to its children- is called min heap.

Any node key is greater than or equal to its children- is called max heap.

Insertion: A new node is inserted in the first available array cell , just to the right of the last node on

the bottom row of the heap. From there it moves up to the appropriate position.

Deletion : A root node is deleted and the last element in the array cell , the last node on the bottom

row of the heap is set as root node. From there it moves down to the appropriate position.

Algorithm:

BUILD_HEAP(A,SIZE)

1. i = 2

2. while (i < SIZE) do

2.1.REHEAP_UP(A, i)

2.2.i = i + 1

3. end while

4. stop

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

REHEAP_UP(A, i)

1. if(i ≠ 0) then

1.1.p = i div 2 // parent of new node

1.2.if (p > 0 and A[i] > A[p])then // continue till root is reached

1.2.1. temp = A[i]

1.2.2. A[i] = A[p]

1.2.3. A[p] = temp

1.2.4. REHEAP_UP(A,p) // parent becomes child & reorder

1.3.End if

2. End if

3. Stop

MIN_HEAP_INSERT(ITEM)

1. If (N>Size) then

1.1. Print “ heap tree is saturated”

1.2. Exit

2. Else

2.1.N = N+1

2.2. A[N] = ITEM // insert data in the first available cell

2.3. i = N // last node is current node

2.4.p = i div 2 // parent of current node

2.5.While (p > 0) and (a[p] > a[i]) do //continue root node is reached or out of order

2.5.1. Temp = A[i]

2.5.2. A[i] = A[p]

2.5.3. A[p] = Temp

2.5.4. i = p // parent becomes child

2.5.5. p = p div 2 // parent of parent becomes new parent

2.6.end while

3. End if

4. Stop

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

MIN_HEAP_DELETE()

1. If (N = 0) then

1.1.Print “ heap tree is exhausted”

1.2.Exit

2. End if

3. Item = A[1] // value at the root node under deletion

4. A[1] = A[N] // replace the value at the root by its counterpart at last node on last

level

5. N = N-1 // size of heap tree is reduced by 1

6. Flag = false, i = 1

7. While(Flag = false) and (I <N) do // rebuild the heap

7.1.Lchild = 2 * i, Rchild = 2 * i + 1 //address of the left and right child of the current node

7.2.If(Lchild ≤ N) then

7.2.1. X = A[Lchild]

7.3.Else

7.3.1. X = -∞

7.4.End if

7.5.If(Rchild ≤ N) then

7.5.1. Y = A[Rchild]

7.6.Else

7.6.1. Y = -∞

 7.7.End if

 7.8. if (A[i] < X) and (A[i] < Y) then //if parent is smaller than its children

 7.8.1. Flag = true // reheap is over

 7.9. else //Any child may have small value

 7.9.1. if (X < Y) and (A[i] > X) // if left child is smaller than right child

 7.9.1.1. Swap (A[i] , A[Lchild]) // interchange data between parent & left child

 7.9.1.2. i = Lchild //left child becomes current node

 7.9.2. else

 7.9.2.1. if(Y < X) and (A[i] > Y) // if right child is smaller than left child

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 7.9.2.1.1. swap (A[i], A[Rchild]) //interchange data between parent & right child

 7.9.2.1.2. i = Rchild //right child becomes current node

 7.9.2.2. End If

 7.9.3. End If

 7.10. End if

 8. End while

 9. Stop

Sample INPUT:

Maximum size of heap :20

Enter no of elements to build the heap : 7

Enter elements :

17 10 21 28 45 32 43 29 39

1.Insert 2. Delete 3. Display 4.exit

Enter your choice : 1

Enter elements to be inserted : 34

Enter your choice : 2

Enter your choice : 4

Expected output:

Heap after build:

 0 1 2 3 4 5 6 7 8

 10 17 21 28 45 32 43 29 39

Heap after insertion:

 0 1 2 3 4 5 6 7 8 9

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 10 17 21 28 34 32 43 29 39 45

Heap after deletion:

0 1 2 3 4 5 6 7 8

17 28 21 29 34 32 43 45 39

Conclusion: Student can understand and analyze the Binary Heap implementation so that he can

implement the priority queues very effectively. So it is attained with PO1, PO2, PSO2 and CO3

Viva Questions:

1. How you can differentiate between a Max and Minimum Heap

2. How Maximum Heap Deals with the root node

3. How Minimum Heap Deals with the tail Nodes

4. Is there any Complexity maintaining Heap? If so explain.

5. What is the Order of Best Complexity Case

6. Give applications of binary heap.

7. What is the difference between heap and binary tree.

8. What are the similarities between heap and binary search tree.

9. Explain heapify procedure.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 5

Aim: - To implement operations on graphs

 i) Vertex insertion ii) Vertex deletion

 iii) Finding vertex iv) Edge addition and deletion

Description: -

A Graph G consists of two sets:

(i) A non empty set V called set of all vertices or nodes.

(ii) A finite set E , called set of edges or arcs or links. This set E is the set of pair of elements

from V.

There are six primitive operations that provide the basic modules needed to maintain a graph:

Add vertex, delete vertex, add an edge, delete an edge, find a vertex, traverse a graph.

ADD VERTEX : Add vertex inserts a new vertex into a graph. When a vertex is added it is disjoint ;

that is not connected to any other vertices in the list. Then update if any adjacent vertices to it.

DELETE VERTEX : Delete vertex removes a vertex from the graph. When a vertex is deleted, all

connecting edges are also removed. To delete a vertex Vi from the graph, first look for the

adjacency matrix of Vi . all the vertices which are present in the adjacency matrix of Vi ,

the node labeled Vi has to be deleted from the adjacency lists of those vertices.

ADD EDGE : Add edge connects a vertex to a destination vertex. If a vertex requires multiple edges,

then add an edge must be called once for each adjacent vertex. To add an edge , two

vertices must be specified. If the graph is a digraph then one of the vertices must be

specified as the source and one as the destination.

DELETE EDGE: Delete edge removes one edge from a graph. To delete an edge between the two

nodes Vi and Vj in an undirected – delete the node having label Vj in the adjacency matrix

of Vi as well as the node having label Vi in the adjacency matrix of Vj.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

FIND VERTEX : find vertex traverses a graph looking for a specified vertex. If the vertex is found ,

its data are returned. If it is not found , an error is indicated.

Algorithm:

INSERT_VERTEX(VX, X)

1. N = N + 1,VX = N // no of vertices is increased by 1 and label of new vertex is N

2. For i = 1 to VX do // insert a row and column for Vx

2.1.Gptr[VX][i] = 0 // row vector is initialized

2.2.Gptr[i][VX] = 0 // column vector is initialized

3. End for

// to add adjacency matrix of new vertex Vx in the graph

4. For I = 1 to N do

4.1.j = X[i] // j is the label of ith adjacent vertex

4.2.if(j ≥ N)then

4.2.1. print “ no vertex labeled X[i] does not exist”

4.3.else

4.3.1. Gptr[Vx][j] = 1 // add entry from VX to X[i]

4.3.2. Gptr[j][Vx] = 1 // add entry from X[i] to VX

4.4.End if

5. End for

6. Stop

INSERT_EDGE(Vi , VJ)

1. If (Vi > N) or (VJ > N) then

1.1.Print “ edge is not possible between Vi and Vj “

2. Else

2.1.Gptr[Vi][VJ] = 1 // Set (i,j) entry

2.2.Gptr[Vj][Vi] = 1 // Set (j,i) entry

3. End if

4. Stop

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

DELETE_VERTEX(VX)

1. If N = 0 then

1.1.Print “ graph is empty : deletion is not possible”

1.2.Exit

2. End if

3. If (VX > N) then

3.1.Print “Vertex does not exist”

3.2.Exit

4. End if

// to remove the row and column of VX vertex

5. j = VX

6. for I = j to N-1 do

6.1.for k = 1 to N do

6.1.1. Gptr[k][i] = Gptr[k][i+1] //shift all the columns after VX towards left once

6.1.2. Gptr[i][k] = Gptr[i+1][k] //Move all the rows after VX towards up once

6.2.End for

7. End for

8. N = N-1

9. Stop

DELETE_EDGE(Vi , Vj)

1. If (Vi > N) or (VJ > N) then

1.1. Print “ vertex does not exist : error in edge removal “

2. Else

2.1.Gptr[Vi][VJ] = 0 // Set (i,j) entry

2.2.Gptr[Vj][Vi] = 0 // Set (j,i) entry

3. End if

4. Stop

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

FIND_VERTEX(VX)

1. If (VX > N) then

1.1.Print “ vertex does not exist “

1.2.Exit

2. Else

2.1.For i = 1 to N do

2.1.1. If (Gptr[VX][i] = 1) then

2.1.1.1.Print “ i “

2.1.2. End if

2.2.End for

3. End if

4. Stop

Sample INPUT:

Enter no of vertices in the graph : 7

Enter adjacency matrix for graph

0 1 1 0 0 0 0

1 0 0 1 1 0 0

1 0 0 1 0 1 0

0 1 1 0 0 0 1

0 1 0 0 0 0 1

0 0 1 0 0 0 1

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

0 0 0 1 1 1 0

1. insert vertex

2. delete vertex

3. insert edge

4. delete edge

5. find vertex

6. display

7. exit

Enter the graph operation: 1

Enter adjacent vertices for new vertex: 2 3 6

Enter the graph operation : 2

Enter vertex to be deleted: 3

Enter graph operation: 3

Enter two vertices where edge to be added: 4 7

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Enter graph operation: 4

Enter two vertices where edge to be deleted: 2 3

Enter graph operation: 5

Enter vertex to be searched: 3

Enter graph operation : 7

Expected output:

After inserting a new node:

0 1 1 0 0 0 0 0

1 0 0 1 1 0 0 1

1 0 0 1 0 1 0 1

0 1 1 0 0 0 1 0

0 1 0 0 0 0 1 0

0 0 1 0 0 0 1 1

0 0 0 1 1 1 0 0

0 1 1 0 0 1 0 0

After deleting node 3 :

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

0 1 0 0 0 0 0

1 0 1 1 0 0 1

0 1 0 0 0 1 0

0 1 0 0 0 1 0

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 0 1 0 0

After adding edge between 4, 7 :

0 1 0 0 0 0 0

1 0 1 1 0 0 1

0 1 0 0 0 1 0

0 1 0 0 0 1 1

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 0

After deleting edge between 2, 3:

0 1 0 0 0 0 0

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

1 0 0 1 0 0 1

0 0 0 0 0 1 0

0 1 0 0 0 1 1

0 0 0 0 0 1 1

0 0 1 1 1 0 0

0 1 0 1 1 0 0

The vertex 3 has the following adjacent vertices: 6

Conclusion: Student can get knowledge and understand and analyze the Graph operations so that

he can implement the computer networks related applications in real world very effectively. So it is

attained with PO1, PO2, PO3, PO4, PSO1, and PSO3 and CO4

Viva Questons:

1. Define a graph?

2. What are the different graph storage representations?

3. Give applications of graph?

4. Give basic operations on graphs?

5. Give advantages and disadvantages of adjacency matrix representation?

6. State advantages and disadvantages of adjacency list representation?

7. Define null graph?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 6

Aim: - To implement Depth First Search for a graph non-recursively.

Description: -

Depth-first search is a generalization of the preorder traversal of a tree. DFS can serve as a structure

around which many other efficient graph algorithms can be built.

 DFS traversal begins at vertex V and visit the vertex V first.

 Select any vertex adjacent to V and visit.

 Visit each vertex, select adjacent vertex until a vertex with no adjacent entries is reached.

 Then backtrack along the path to V, if it has another vertex other than previous one or unvisited

adjacent vertex then continue same procedure.

If the graph is not connected, DFS must be called on a node of each connected component. The VISIT

array gives the order of visit of vertices during traversal. A stack is used to maintain the track of all

paths from any vertex. As an example of DFS, suppose in the graph of the following figure, we start

at node A.

VISIT :

STACK :

A E C D B

B

E

D

B

C

D

B
A

D

B

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Algorithm:

V, the starting vertex. Visit is an array . Initially for all vertices in the graph visit[i] =0 , where i is

vertex in graph. adjmat[u] is adjacent matrix that is gives adjacent vertices for vertex u. N , the

number of vertices in the graph.

DEPTH_FIRST_SEARCH()

1. If adjmat=NULL then

1.1. Print “Graph is empty”

1.2. exit

2. end If

3. u = v // start from v

4. stack.PUSH(u) // push the starting vertex into stack

5. while (stack.TOP ≠ NULL) do // till the stack is not empty

5.1. u = stack.POP() // pop the top element from stack

5.2. if (visit[u] = 0) then // if u is not in visit

5.2.1. visit[u] = 1 // mark u as visited

5.2.2. print “ u”

5.2.3. for i=1 to N // to push all the adjacent vertices of u into stack

5.2.3.1. if (adjmat[u][i] = 1) then

5.2.3.1.1. stack .PUSH(v)

5.2.3.2. End if

5.2.4. end for

5.3. end if

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

6. end while

7. stop

Sample INPUT:

Enter number of vertices in graph : 5

Enter adjacency matrix for graph:

0 1 0 1 1

1 0 1 1 0

 0 1 0 1 1

1 1 1 0 0

1 0 1 0 0

Expected output:

In DFS the vertices are traversed in the following order :

0 4 2 3 1

Conclusion: Student can get knowledge and understand and analyze the Graph traversing problem

so that he can implement the computer networks related applications in real world very effectively.

So it is attained with PO1, PO2, PO3, PO4, PSO1, and PSO3 and CO4

Viva Questions:

1. Explain DFS.

2. Why DFS is named to be a traversal technique?

3. How DFS is more convenient than BFS?

4. How internal Node and Visited Node are Different?

5. Can we use this techniques for disconnected graphs also. If So Explain ?

6. Does this supports recursion factors?

7. Explain about the adjacency matrix?

8. How Adjacency matrix useful in traversal techniques?

9. Which data structure supports for implementation of DFS?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 7

Aim: - To implement Breadth First Search for a graph non-recursively.

Description: -

 Another systematic way of visiting the nodes is called breadth-first search (BFS). The

approach is called “breadth-first” because from each node v that we visit we search as broadly as

possible by next visiting all nodes adjacent to v.

 The BFS begins by picking a starting vertex.

 After processing it, process all of its adjacent vertices.

 After processing all of the first adjacent vertices , pick the first adjacent vertex and process all of its

adjacent vertices.

 Then second adjacent vertex , process all of its adjacent vertices.

 This process continues until finished.

The Breadth First Search algorithm inserts a node into a queue, which we assume is initially

empty. Every entry in the array mark is assumed to be initialized to the value unvisited. If the graph is

not connected, BFS must be called on a node of each connected component. Note that in BFS we

must mark a node visited before inserting it into the queue, to avoid placing it on the queue more than

once. The algorithm terminates when the queue becomes empty.

The VISIT array gives the order of visit of vertices during traversal. A stack is used to maintain the

track of all paths from any vertex. As an example of DFS, suppose in the graph of the following

figure, we start at node A.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

VISIT:

QUEUE:

Algorithm:

BREADTHTH_FIRST_SEARCH(V)

1. If (adjmat = NULL) then

1.1. Print “ Graph is empty”

1.2. exit

2. End if

3. u = V // start from V

4. queue.ENQUEUE(u) // push the starting vertex into queue

5. while (queue.STATUS() ≠ EMPTY) do // till the queue is not empty

5.1. u = queue.DEQUEUE() // delete the first element from queue

5.2. if (visit[u] = 0) then // if u is not in visit

5.2.1. visit[u] = 1 // mark the vertex u as visited

5.2.2. print “u “

5.2.3. for I =1 to N do //to enter all the adjacent vertices of u

5.2.3.1. if (adjmat[u][i] = 1) then // into queue

5.2.3.1.1. queue.ENQUEUE(i)

5.2.3.2. End If

A B D E C

E D B C E D C E C
A

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

5.2.4. End for

5.3. End If

6. end while

7. stop

Sample INPUT:

Enter number of vertices in graph : 5

Enter adjacency matrix for graph:

0 1 0 1 1

1 0 1 1 0

 0 1 0 1 1

1 1 1 0 0

1 0 1 0 0

Expected output:

In BFS the vertices are visited in the following order :

0 1 3 4 2

Conclusion: Student can get knowledge and understand and analyze the Graph traversing problem

so that he can implement the computer networks related applications in real world very effectively.

So it is attained with PO1, PO2, PO3, PO4, PSO1, and PSO3 and CO4

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Viva Questions:

1. Give any two differences between DFS and BFS?

2. Explain the Main logic in BFS?

3. Which data structure is used for implementation of BFS?

4. Give applications of BFS & DFS?

5. Is two vertices are connected or not ? this question cane answered with BFS & DFS? Explain.

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 8

Aim: To implement Prim’s algorithm to generate a min-cost spanning tree.

Description: -

 Definition : Spanning trees –

Let G = (V , E) be an undirected connected graph. A subgraph t= (V , E’) of G is a spanning tree if

and only if t is a tree. (No cycle exists.)

In practical situations, the edges have weights assigned to them, weights are positive. These weights

may represent the cost of construction, lengths of links etc.

Given such weighted graph one would like to select cities (vertices) to have minimum total cost /

minimum total length. So one can find a spanning tree with minimum cost.

Since identification of minimum spanning tree involves selection of a subset of the edges, this

problem fits into the Subset Paradigm.

Prim's algorithm works by attaching a new edge to a single growing tree at each step: Start

with any vertex as a single-vertex tree; then add V-1 edges to it, always taking next (coloring black)

the minimum-weight edge that connects a vertex on the tree to a vertex not yet on the tree (a crossing

edge for the cut defined by tree vertices).

Algorithm:

PRIM():

1. for i = 0 to N-1 do

1.1.selected[i] = false

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2. End for

3. Selected[0]=1,ne=1,sum=0

4. While (ne < N) do

4.1.min = ∞

4.2.for i=0 to N-1 do

4.2.1. If(slelcted[i]=true) then

4.2.1.1.for j=1 to N-1 do

4.2.1.1.1. if(selected[j]=false) then

4.2.1.1.1.1.if(min > adjMat[i][j]) then

4.2.1.1.1.1.1. min = adjMat[i][j]

4.2.1.1.1.1.2. Row = i

4.2.1.1.1.1.3. Col = j

4.2.1.1.1.2.End if

4.2.1.1.2. End if

4.2.1.2.End for

4.2.2. End if

4.3.End for

4.4.selected[col]=true

4.5.ne = ne + 1

4.6.sum = sum + adjMat[row][col]

4.7.Print “ edge(row,col) cost : adjMat[i][j]”

5. End while

6. Print “total min cost – sum”

7. Stop

Sample INPUT:

Enter number of vertices in a graph: 7

Enter weight matrix for graph:

99999 9 99999 99999 99999 12 99999

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

9 99999 5 99999 99999 99999 4

99999 5 99999 4 99999 99999 99999

99999 99999 4 99999 7 99999 6

99999 99999 99999 7 99999 8 8

 12 99999 99999 99999 8 99999 99999

99999 4 99999 6 8 99999 99999

Expected output:

Min-Cost Spanning tree:

Edge (0 , 1) cost : 9

Edge (1 , 6) cost : 4

Edge (1 , 2) cost : 5

Edge (2 , 3) cost : 4

Edge (3 , 4) cost : 7

Edge (4 , 5) cost : 8

Total Min-cost = 37

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Conclusion: Student can get knowledge and analyzing the Minimum spanning tree for the given

graph so that he can implement the applications like GPS and traffic analysis. So it is attained with

PO1, PO2, PO3 and CO5

Viva Questons:

1. What is minimum cost spanning tree?

2. What is the time complexity for prim’s algorithm

3. What are the differences between prims and kruskal algorithm

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 9

Aim: - To implement Krushkal’s algorithm to generate a min-cost spanning tree.

Description: -

AN edge – weighted graph is a graph where we associate weights or costs with each edge. A

minimum spanning tree (MST) of an edge – weighted graph is a spanning tree whose weight (the

sum of the weights of its edges) is no larger than the weight of any other spanning tree.

 The graph is connected . The spanning tree condition in our definition implies that the graph

must be connected for an MST to exist. If a graph is not connected, we can adapt our

algorithms to compute the MSTs of each of its connected components, collectively known as

a minimum spanning forest.

 The edge weights are not necessarily distances. Geometric intuition is sometimes beneficial,

but the edge weights can be arbitrary.

 The edge weights may be zero or negative. If the edge weights are all positive, it suffices to

define the MST as the sub graph with minimal total weight that connects all the vertices.

 The edge weights are all different. If edges can have equal weights, the minimum spanning

tree may not be unique. Making this assumption simplifies some of our proofs, but all of our

algorithms work properly even in the presence of equal weights.

 Krushkal’s algorithm processes the edges in order of their weight values (smallest to

largest), taking for the MST (coloring black) each edge that does not form a cycle with edges

previously added, stopping after adding V-1 edges. The black edges form a forest of trees that evolves

gradually into a single tree, the MST.

Algorithm:

1. K = 1

2. For I =1 to n-1 do

2.1.For j = i+1 to N do

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

2.1.1. If adjMat[i][j] > 0 then

2.1.1.1.X[k].Vi = i

2.1.1.2.X[k].Vj = j

2.1.1.3.X[k].weight = adjMat[i][j]

2.1.1.4.X[k].select = false

2.1.1.5.K = k + 1

2.1.2. End if

2.2.End for

3. End for

4. Ne = k

5. If ne < N-1 then

5.1.Print “ no spanning tree possible in the graph”

5.2.Exit

6. End if

7. X.sort_edges()

8. For I =1 to n-1 do

8.1.For j = i+1 to N do

8.1.1. TREE[i][j]=0

8.2.End for

9. End for

10. K = 1 , l = 1

11. While k < N do

11.1. temp = TREE

11.2. i = X[l].Vi, j = X[l].Vj

11.3. temp[i][j] = l, temp[j][i] = l

11.4. WARSHALL(temp)

11.5. Flag = false

11.6. For p = 1 to N do

11.6.1. If temp[p][p] =1 then

11.6.1.1. Flag =true

11.6.1.2. Break

11.6.2. End if

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

11.7. End for

11.8. If not flag then

11.8.1. TREE[i][j] =1, TREE[j][i] = 1

11.8.2. K = k + 1

11.8.3. X[l].select = true

11.9. End if

11.10. L = l + 1

12. End while

13. Return TREE

14. Stop

Sample INPUT:

Enter number of vertices in a graph:

7

Enter weight matrix for graph:

99999 9 99999 99999 99999 12 99999

9 99999 5 99999 99999 99999 4

99999 5 99999 4 99999 99999 99999

99999 99999 4 99999 7 99999 6

99999 99999 99999 7 99999 8 8

 12 99999 99999 99999 8 99999 99999

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

99999 4 99999 6 8 99999 99999

Expected output:

Min-Cost Spanning tree:

Edge (0 , 1) cost : 9

Edge (1 , 6) cost : 4

Edge (1 , 2) cost : 5

Edge (2 , 3) cost : 4

Edge (3 , 4) cost : 7

Edge (4 , 5) cost : 8

Total Min-cost = 37

Conclusion: Student can get knowledge and analyzing the Minimum spanning tree for the given

graph so that he can implement the applications like GPS and traffic analysis. So it is attained with

PO1,PO2, PO3, PSO2,PSO3 and CO5

Viva Questons:

1. What is minimum cost spanning tree?

2. What is the time complexity for kruskal ’s algorithm

3. What are the differences between prim’s and kruskal’s algorithm

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No:10

Aim: - To implement Dijkstra’s algorithm to find shortest path in the graph.

Description: -

 Dijkstra's algorithm, conceived by Dutch computer scientist Edsger Dijkstra in 1956

and published in 1959,[1][2] is a graph search algorithm that solves the single-source shortest path

problem for a graph with nonnegative edge path costs, producing a shortest path tree. This algorithm

is often used in routing and as a subroutine in other graph algorithms.

For a given source vertex (node) in the graph, the algorithm finds the path with lowest

cost (i.e. the shortest path) between that vertex and every other vertex. It can also be used for finding

costs of shortest paths from a single vertex to a single destination vertex by stopping the algorithm

once the shortest path to the destination vertex has been determined. For example, if the vertices of

the graph represent cities and edge path costs represent driving distances between pairs of cities

connected by a direct road, Dijkstra's algorithm can be used to find the shortest route between one city

and all other cities. As a result, the shortest path first is widely used in network routing protocols,

most notably IS-IS and OSPF(Open Shortest Path First).

Dijkstra's original algorithm does not use a min-priority queue and runs in O(|V|2). The

idea of this algorithm is also given in (Leyzorek et al. 1957). The implementation based on a min-

priority queue implemented by a Fibonacci heap and running in O(|E| + |V| log |V|) is due to (Fredman

& Tarjan 1984). This is asymptotically the fastest known single-source shortest-path algorithm for

arbitrary directed graphs with unbounded nonnegative weights.

In the following algorithm, the code u := vertex in Q with smallest dist[], searches for

the vertex u in the vertex set Q that has the leastdist[u] value. That vertex is removed from the

set Q and returned to the user. dist_between(u, v) calculates the length between the two neighbor-

nodes u and v. The variable alt on line 15 is the length of the path from the root node to the neighbor

node v if it were to go through u. If this path is shorter than the current shortest path recorded for v,

that current path is replaced with this altpath. The previous array is populated with a pointer to the

"next-hop" node on the source graph to get the shortest route to the source.

http://en.wikipedia.org/wiki/Computer_scientist
http://en.wikipedia.org/wiki/Edsger_Dijkstra
http://en.wikipedia.org/wiki/Dijkstra's_algorithm#cite_note-Dijkstra_Interview-0
http://en.wikipedia.org/wiki/Dijkstra's_algorithm#cite_note-Dijkstra_Interview-0
http://en.wikipedia.org/wiki/Graph_search_algorithm
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Shortest_path_problem
http://en.wikipedia.org/wiki/Graph_(mathematics)
http://en.wikipedia.org/wiki/Edge_(graph_theory)
http://en.wikipedia.org/wiki/Shortest_path_tree
http://en.wikipedia.org/wiki/Routing
http://en.wikipedia.org/wiki/Vertex_(graph_theory)
http://en.wikipedia.org/wiki/Routing_protocol
http://en.wikipedia.org/wiki/IS-IS
http://en.wikipedia.org/wiki/OSPF
http://en.wikipedia.org/wiki/Min-priority_queue
http://en.wikipedia.org/wiki/Dijkstra's_algorithm#CITEREFLeyzorekGrayJohnsonLadew1957
http://en.wikipedia.org/wiki/Fibonacci_heap
http://en.wikipedia.org/wiki/Dijkstra's_algorithm#CITEREFFredmanTarjan1984
http://en.wikipedia.org/wiki/Dijkstra's_algorithm#CITEREFFredmanTarjan1984
http://en.wikipedia.org/wiki/Asymptotic_computational_complexity

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Algorithm:

DIJKSTRA(SOURCE):

1. Found[0] = true, d[0] = 0

2. For I =1 to n-1 do

2.1. found[i] = false

2.2. d[i] = adjMat[0][i]

3. End For

4. For i =1 to n-1 do

4.1. min = ∞

4.2. for w = 1 to n-1 do

4.2.1. if not found[w] && d[w] < min then

4.2.1.1. x = w

4.2.1.2. min = d[w]

4.2.2. End if

4.3. found[x] = true

4.4. for w =1 to n-1 do

4.4.1. if not found[w] then

4.4.1.1. if min+adjMat[x][w] < d[w] then

4.4.1.1.1. d[w] = min + adjMat[x][w]

4.4.1.2. End if

4.4.2. End if

4.5. End for

5. End for

6. Stop

Sample INPUT:

Enter number of vertices in a graph : 5

Enter weight matrix for graph:

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

99999 2 99999 6 20

99999 99999 10 99999 99999

99999 99999 99999 99999 2

99999 99999 4 99999 12

99999 99999 99999 99999 99999

Expected output:

Shortest path from vertex 0 to other vertices:

0 -> 1 : 2

0 -> 2 : 10

0 -> 3 : 6

0 -> 4 : 12

Conclusion: Student can get knowledge and analyzing the Shortest Path between the vertices for

the given graph so that he can implement the applications like network routing protocols. So it is

attained with PO1, PO2, PO3, PSO2,PSO3 and CO5

Viva Questions:

1. Dijkistra algor ithm is used for?

Ans:- Solve shortest path problem in weighted graph.

2. Does Single Dimensional Array usefull for finding out the Adjacency Matrix

3. What are the limitations of Dijkstras Algorithm

4. Explain the main logic of Dijkstras Algorithm

5. What is a petty graph?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

6. Using dijkstra's algorithm how do I calculate a route from a start node to an end node via a

specific node?

7. Will Dijkstra's algorithm work properly with a link of cost 0. Explain your answer.

8. Why it is called as Single Source Shortest Path Algorithm.

9. What is the order of Time Complexity

10. How it is related with Greedy problem

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 11

Aim: - To implement pattern matching using Boyer-Moore algorithm.

Description: -

 The Boyer-Moore algorithm searches for occurrences of P in T by performing explicit

character comparisons at different alignments. Instead of a brute-force search of all alignments (of

which there arem - n), Boyer-Moore uses information gained by preprocessing P to skip as many

alignments as possible.

The algorithm begins at alignment k = n, so the start of P is aligned with the start of T. Characters

in P and T are then compared starting at index n in P and k in T, moving downward: the strings are

matched from the end and toward the beginning of P. The comparisons continue until either a

mismatch occurs or the beginning of P is reached (which means there is a match), after which the

alignment is shifted to the right according to the maximum value permitted by a number of rules. The

comparisons are performed again at the new alignment, and the process repeats until the alignment is

shifted past the end of T.

The shift rules are implemented as constant-time table lookups, using tables generated during the

preprocessing of P.

 S[i] refers to the character at index i of string S, counting from 1.

 S[i..j] refers to the substring of string S starting at index i and ending at j, inclusive.

 A prefix of S is a substring S[1..i] for some i in range [1, n], where n is the length of S.

 A suffix of S is a substring S[i..n] for some i in range [1, n], where n is the length of S.

 The string to be searched for is called the pattern.

 The string being searched in is called the text.

 The pattern is referred to with symbol P.

 The text is referred to with symbol T.

 The length of P is n.

 The length of T is m.

http://en.wikipedia.org/wiki/Brute-force_search
http://en.wikipedia.org/wiki/Substring
http://en.wikipedia.org/wiki/Substring#Prefix
http://en.wikipedia.org/wiki/Substring#Suffix

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 An alignment of P to T is an index k in T such that the last character of P is aligned with

index k of T.

A match or occurrence of P occurs at an alignment if P is equivalent to T[(k-n)..n].

Algorithm:

BoyerMoore(T,P)

1. n = T.length, m = P.length

2. i = m-1

3. for j=0 to N-1 do

3.1. delta[j] = m

4. for j=0 to m-1

4.1. delta[Pj] = m-j-1

5. while (i < n) do

5.1. j = m-1

5.2. while(j≥ 0 and Pj = Ti)

5.2.1. i = i – 1

5.2.2. j = j – 1

5.3. if (j = -1) then

5.3.1. return true

5.4. i = i + max(delta[Ti],m-j)

6. End while

7. Return false

8. Stop

Sample INPUT:

Enter the text:

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

THE RIVER MISSISSIPPI FLOWS IN NORTH AMERICA

 Enter the pattern:

 SSIPP

Expected output:

Pattern SSIPP is present in text:

THE RIVER MISSISSIPPI FLOWS IN NORTH AMERICA

Conclusion: Student can get knowledge and analyzing the Pattern matching problems so that he

can implement the different searching algorithms. it is attained with PO1,PO2,PO3,PSO1,PSO2,PSO3

and CO6

Viva Questions:

1. How Boyer – Moore algorithm compares the pattern to the text?

2. the worst – case complexity of BM algorithm?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 12

Aim: - To implement Knuth-Morris-Pratt algorithm for pattern matching.

Description: -

The KMP algorithm compares the pattern to the text in left-to-right, but shifts the pattern, P

more intelligently than the brute-force algorithm. When a mismatch occurs, what is the most we can

shift the pattern so as to avoid redundant comparisons. The answer is that the largest prefix of P[0..j]

that is a suffix of P[1..j].

 Algorithm:

 KMPMatch(T,P)

1. n = T.length, m = P.length

2. Fail = failFunct ion(P)

3. i = 0, j = 0

4. while(i < n) do

4.1. if (P[j] = T[i]) then

4.1.1. if (j= m-1)then

4.1.1.1. return true

4.1.2. end if

4.1.3. i=i+1,j=j+1

4.2. End if

4.3. Else

4.3.1. If(j>0) then

4.3.1.1. j = fail[j-1]

4.3.2. End if

4.3.3. Else

4.3.3.1. i = i+1

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

5. End while

6. Return false

7. Stop

failFunction(P)

1. m = P.length

2. i=1,j=0,fail[0]=0

3. while(i< m) do

3.1. if(P[i]=P[j]) then

3.1.1. fail[i] = j+1

3.1.2. i=i+1

3.1.3. j=j+1

3.2. End if

3.3. Else

3.3.1. If (j > 0) then

3.3.1.1. j = fail[j-1]

3.3.2. End if

3.3.3. Else

3.3.3.1. fail[i] = 0

3.3.3.2. i=i+1

3.3.4. End else

4. End while

5. return fail

6. Stop

Sample INPUT:

Enter the text:

THE RIVER MISSISSIPPI FLOWS IN NORTH AMERICA

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 Enter the pattern:

 SSIPP

Expected output:

Pattern SSIPP is present in text:

THE RIVER MISSISSIPPI FLOWS IN NORTH AMERICA

Conclusion: Student can get knowledge and analyzing the Pattern matching problems so that he

can implement the different searching algorithms. It is attained with PO1,PO2, PO3, PSO1, PSO2,

PSO3 and CO6

Viva Questions:

1. How KMP algorithm compares the pattern to the text?

2. KMP algorithm is used for

3. the worst – case complexity of KMP algorithm?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiments beyond the Syllabus

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 1

Aim: - To implement the Skip List.

Description: -

 Skip lists are made up of a series of nodes connected one after the other. Each node contains a

key/value pair as well as one or more references, or pointers, to nodes further along in the list. The

number of references each node contains is determined randomly. This gives skip lists their

probabilistic nature, and the number of references a node contains is called its node level.

Each node will have at least one node reference, and the first reference will always point to the next

node in the list. In this way, skip lists are very much like linked lists. However, any additional node

references can skip one or more intermediate nodes and point to nodes later in the list. This is where

skip lists get their name.

Two nodes that are always present in a skip list are the header node and the NIL node. The header

node marks the beginning of the list and the NIL node marks the end of the list. The NIL node is

unique in that when a skip list is created, it is given a key greater than any legal key that will be

inserted into the skip list. This is important to how skip lists algorithms work.

Skip lists have three more important properties: maximum level, current overall level, and probability.

Maximum level is the highest level a node in a skip list may have. In other words, maximum level is

the maximum number of references a skip list node may have to other nodes. The current overall level

is the value of the node level with the highest level in the skip list. Probability is a value used in the

algorithm for randomly determining the level for each node.

Algorithm:

Determining Node Level

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

The level for each node is determined using the following algorithm:

Hide Copy Code

randomLevel()

 lvl := 1

 --random() that returns a random value in [0...1)

 while random() < p and lvl < MaxLevel do

 lvl := lvl + 1

 return lvl

Where p is the skip list's probability value and MaxLevel is the maximum level allowed for any node

in the skip list.

The node level is initialized to a value of 1. Each time the while loop executes, the level value is

incremented by 1. If p is set to a value of 0.5, then there is a 50% chance that the while loop will

execute once, a 25% chance it will execute twice, and a 12.5% chance it will execute three times. This

creates a structure in which there will be more nodes with a lower level than higher ones.

There is room for optimization here. Suppose the overall level of a skip list is 4 and a value of 7 is

returned by the randomLevel algorithm for a new node. Since 7 is larger than 4, the new skip list level

will be 7. However, 7 is 3 levels greater than 4. What this means is that when searching the skip list,

there will be 2 additional levels that will have to be traversed unnecessarily (this will become more

clear when we examine the search algorithm). What is needed is a way to limit the results of

the randomLevel algorithm so that it never produces a level greater than one more than the present

overall skip list level. Pugh makes a suggestion to "fix the dice." Here is the

altered randomLevel algorithm:

Hide Copy Code

randomLevel(list)

 lvl := 1

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 --random() that returns a random value in [0...1)

 while random() < p and lvl < MaxLevel and lvl <= list->level do

 lvl := lvl + 1

 return lvl

Searching

Searching for a key within a skip list begins with starting at header at the overall list level and moving

forward in the list comparing node keys to the search key. If the node key is less than the search key,

the search continues moving forward at the same level. If on the other hand, the node key is equal to

or greater than the search key, the search drops down one level and continues forward. This process

continues until the search key has been found if it is present in the skip list. If it is not, the search will

either continue to the end of the list or until the first key with a value greater than the search key is

found.

Hide Copy Code

Search(list, searchKey)

 x := list->header

 --loop invariant: x->key < searchKey

 for i := list->level downto 1 do

 while x->forward[i]->key < searchKey do

 x := x->forward[i]

 --x->key < searchKey <= x->forward[1]->key

 x := x->forward[1]

 if x->key = search then return x->value

 else return failure

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Where forward is the array of node references each node has to nodes further in the list.

Searching for the key with a value of 8.

Inserting

Insertion begins with a search for the place in the skip list to insert the new key/value pair. The search

algorithm is used with one change: an array of nodes is added to keep track of the places in the skip

list where the search dropped down one level. This is done because the pointers in those nodes will

need to be rearranged when the new node is inserted into the skip list.

Hide Copy Code

Insert(list, searchKey, newValue)

 local update[1..MaxLevel]

 x := list->header

 --loop invariant: x->key < searchKey

 for i := list->level downto 1 do

 while x->forward[i]->key < searchKey do

 x := x->forward[i]

 --x->key < searchKey <= x->forward[1]->key

 update[i] := x

 x := x->forward[1]

 if x->key = search then x->value := newValue

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 else

 lvl := randomLevel()

 if lvl > list->level then

 for i := list->level + 1 to lvl do

 update[i] := list->header

 list->level := lvl

 x := makeNode(lvl, searchKey, newValue)

 for i := 1 to lvl do

 x->forward[i] := update[i]->forward[i]

 update[i]->forward[i] := x

The first part of this algorithm should look familiar. It is the same as the search algorithm except that

it uses the update array to hold references to the nodes where the search drops down one level. After

the search has ended, a check is made to see if the key in the node where the search stopped matches

that of the search key. If so, the value for that key is replaced with the new value. If on the other hand,

the keys do not match, a new node is created and inserted into the skip list.

To insert a new node, a node level is retrieved from the randomLevel algorithm. If this value is

greater than the current overall level of the skip list, the references in the update array from the overall

skip list level up to the new level are assigned to point to the header. This is done because if the new

node has a greater level than the current overall level of the skip list, the forward references in the

header will need to point to this new node instead of the NIL node. This reassignment takes place

during the next step of the algorithm.

Next, the new node is actually created and it is spliced into the skip list in the next for loop. What this

loop does is work from the bottom of the skip list up to the new node's level reassigning the forward

references along the way. It's much the same as rearranging the references in a linked list when a new

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

node is inserted except that with a skip list there are an array of references that have to be reassigned

rather than just one or two.

The skip list before inserting key 10.

The skip list after inserting key 10.

Deletion

Deletion uses the same search algorithm as insertion; it keeps track of each place in the list in which

the search dropped down one level. If the key to be deleted is found, the node containing the key is

removed.

Hide Copy Code

Delete(list, searchKey)

 local update[1..MaxLevel]

 x := list->header

 --loop invariant: x->key < searchKey

 for i := list->level downto 1 do

 while x->forward[i]->key < searchKey do

 x := x->forward[i]

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

 --x->key < searchKey <= x->forward[1]->key

 update[i] := x

 x := x->forward[1]

 if x->key = searchKey then

 for i := 1 to list->level do

 if update[i]->forward[i] != x then break

 update[i]->forward[i] := x->forward[i]

 free(x)

 while list->level > 1 and

 list->header->forward[list->level] = NIL do

 list->level := list->level - 1

After the key is found, the for loop begins from the bottom of the skip list to the top reassigning the

nodes with references to the soon to be deleted node to the nodes that come after it. Again, very much

like a linked list except that here there are an array of links to nodes further along in the list that must

be managed.

Once this has been done, the node is deleted. The only thing left to do is to update the overall current

list level if necessary. This is done in the final while loop.

Expected output:

Insert: --------------------

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

1[1]->2[2]->3[3]->4[4]->6[6]->9[9]->11[11]->NIL

Search: --------------------

Key = 3, value = 3

Key = 4, value = 4

Key = 7, not found

Key = 10, not found

Key = 111, not found

Search: --------------------

1[1] ->2[2]->4[4]->6[6]->11[11]->NULL

Viva Questions:

1. What is the Skip List?

2. How we can perform operations on Skip List?

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

Experiment No: 2

Aim: - To implement the Floyd’s Algorithm

Description:

Starting point: a graph of vertices and weighted edges

Each edge is of a direction and has a length if there’s path from vertex i to j, there may not be path

from vertex j to i path length from vertex i to j may be different than path length from vertex j to i

 Objective: finding the shortest path between every pair of vertices (i → j)

Application: table of driving distances between city pairs

Algorithm:

Input: n — number of vertices

 a — adjacency matrix

Output: Transformed a that contains the shortest path lengths

for k ← 0 to n – 1

 for i ← 0 to n − 1

for j ← 0 to n – 1

 a[i, j] ← min(a[i, j], a[i, k] + a[k, j])

end for

end for

 end for

Sample Input:

graph [V][V] = { {1, 1, 0, 1},

 {0, 1, 1, 0},

 {0, 0, 1, 1},

 {0, 0, 0, 1}

 };

Sample Output:

Following matrix is transitive closure of the given graph

1 1 1 1

0 1 1 1

ADS – LAB Manual

LENDI INSTITUTE OF ENGINEERING & TECHNILIGY - DEPARTMENT OF CSE

0 0 1 1

0 0 0 1

Viva-Voce Questions:

1. What is the Spanning tree?

2. What are the techniques for all pair-shortest path algorithms?

3. What is the Floyd’s Algorithm Time Complexity?

4. What is the Warshall’s Algorithm Time Complexity?

	Division Method
	Multiplication Method
	1. The lookup operation
	2.The insert operation
	3.The delete operation
	The level for each node is determined using the following algorithm:
	Hide Copy Code
	randomLevel()
	lvl := 1
	--random() that returns a random value in [0...1)
	while random() < p and lvl < MaxLevel do
	lvl := lvl + 1
	return lvl
	Where p is the skip list's probability value and MaxLevel is the maximum level allowed for any node in the skip list.
	The node level is initialized to a value of 1. Each time the while loop executes, the level value is incremented by 1. If p is set to a value of 0.5, then there is a 50% chance that the while loop will execute once, a 25% chance it will execute twice,...
	There is room for optimization here. Suppose the overall level of a skip list is 4 and a value of 7 is returned by the randomLevel algorithm for a new node. Since 7 is larger than 4, the new skip list level will be 7. However, 7 is 3 levels greater th...
	Hide Copy Code (1)
	randomLevel(list)
	lvl := 1 (1)
	--random() that returns a random value in [0...1) (1)
	while random() < p and lvl < MaxLevel and lvl <= list->level do
	lvl := lvl + 1 (1)
	return lvl (1)
	Searching
	Searching for a key within a skip list begins with starting at header at the overall list level and moving forward in the list comparing node keys to the search key. If the node key is less than the search key, the search continues moving forward at t...
	Hide Copy Code (2)
	Search(list, searchKey)
	x := list->header
	--loop invariant: x->key < searchKey
	for i := list->level downto 1 do
	while x->forward[i]->key < searchKey do
	x := x->forward[i]
	--x->key < searchKey <= x->forward[1]->key
	x := x->forward[1]
	if x->key = search then return x->value
	else return failure
	Where forward is the array of node references each node has to nodes further in the list.
	Searching for the key with a value of 8.
	Inserting
	Insertion begins with a search for the place in the skip list to insert the new key/value pair. The search algorithm is used with one change: an array of nodes is added to keep track of the places in the skip list where the search dropped down one lev...
	Hide Copy Code (3)
	Insert(list, searchKey, newValue)
	local update[1..MaxLevel]
	x := list->header (1)
	--loop invariant: x->key < searchKey (1)
	for i := list->level downto 1 do (1)
	while x->forward[i]->key < searchKey do (1)
	x := x->forward[i] (1)
	--x->key < searchKey <= x->forward[1]->key (1)
	update[i] := x
	x := x->forward[1] (1)
	if x->key = search then x->value := newValue
	else
	lvl := randomLevel()
	if lvl > list->level then
	for i := list->level + 1 to lvl do
	update[i] := list->header
	list->level := lvl
	x := makeNode(lvl, searchKey, newValue)
	for i := 1 to lvl do
	x->forward[i] := update[i]->forward[i]
	update[i]->forward[i] := x
	The first part of this algorithm should look familiar. It is the same as the search algorithm except that it uses the update array to hold references to the nodes where the search drops down one level. After the search has ended, a check is made to se...
	To insert a new node, a node level is retrieved from the randomLevel algorithm. If this value is greater than the current overall level of the skip list, the references in the update array from the overall skip list level up to the new level are assig...
	Next, the new node is actually created and it is spliced into the skip list in the next for loop. What this loop does is work from the bottom of the skip list up to the new node's level reassigning the forward references along the way. It's much the s...
	The skip list before inserting key 10.
	The skip list after inserting key 10.
	Deletion
	Deletion uses the same search algorithm as insertion; it keeps track of each place in the list in which the search dropped down one level. If the key to be deleted is found, the node containing the key is removed.
	Hide Copy Code (4)
	Delete(list, searchKey)
	local update[1..MaxLevel] (1)
	x := list->header (2)
	--loop invariant: x->key < searchKey (2)
	for i := list->level downto 1 do (2)
	while x->forward[i]->key < searchKey do (2)
	x := x->forward[i] (2)
	--x->key < searchKey <= x->forward[1]->key (2)
	update[i] := x (1)
	x := x->forward[1] (2)
	if x->key = searchKey then
	for i := 1 to list->level do
	if update[i]->forward[i] != x then break
	update[i]->forward[i] := x->forward[i]
	free(x)
	while list->level > 1 and
	list->header->forward[list->level] = NIL do
	list->level := list->level - 1
	After the key is found, the for loop begins from the bottom of the skip list to the top reassigning the nodes with references to the soon to be deleted node to the nodes that come after it. Again, very much like a linked list except that here there ar...
	Once this has been done, the node is deleted. The only thing left to do is to update the overall current list level if necessary. This is done in the final while loop.

