

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
1

EX. NO: 1 FIBONACCI NUMBER USING RECURSION

Aim:

Write recursive programme which computes the n
th

 Fibonacci number, for appropriate values of n.

Analyze behavior of the programme Obtain the frequency count of the statement for various

values of n.

Description: The Fibonacci numbers or Fibonacci series are the numbers in the

following integer sequence: 0,1,1,2,3,5,8,13,21,…. .By definition, the first two numbers in the

Fibonacci sequence are 0 and 1, and each subsequent number is the sum of the previous two.

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence

relation Fn= Fn-1 + Fn-2

Algorithm:

Input: Read n value

Output: Prints the n
th

 Fibonacci term

Step1: Start

Step2: Read n value for computing n
th

 term in Fibonacci series

Step3: call Fibonacci (n)

Step4: Print the n
th

 term

Step5: End

 Fibonacci(n)

// Algorithm Fibonacci computes the nth Fibonacci number, for appropriate values of n.

Step1: If n = 0 then go to step2 else go to step3

Step2: return 0

Step3: If n = 1 then go to step4 else go to step5

Step4: return 1

Step5: return(Fibonacci (n-1) + Fibonacci (n-2))

http://en.wikipedia.org/wiki/Integer_sequence
http://en.wikipedia.org/wiki/Recurrence_relation
http://en.wikipedia.org/wiki/Recurrence_relation

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
2

Sample Input:

 Fibonacci number upto 8 is 11

Observed Output:

 Fibonacci Number Computation

 For which term you want to compute the Fibonacci number 9

 Fibonacci Number of 9 is 19

Viva questions:

1. What is Fibonacci series?

2. What is the Logic of Fibonacci series?

3. Give example of Fibonacci series:

4. What is recursion?

5. What are the advantages of the functions?

6. What is data structure?

7. What are the goals of Data Structure?

8. What does abstract Data Type Mean?

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
3

EX. NO: 2(A) FACTORIAL USING RECURSION AND NON-RECURSION

Aim:

Write recursive and non recursive C programme for calculation of Factorial of an integer

Description:

A recursive function defines values of the functions for some inputs in terms of the values of

the same function for other inputs. Simply a recursion function can be defined as a function call to

itself. The recursion concept was implemented using the data structure called

STACKS.The factorial of a non-negative integer n, denoted by n! . It is the product of all positive

integers less than or equal to n. For example, 5! =5*4*3*2*1=120

Algorithm:

/* factorial_recursive and NonRecursive*/

Input: integer n

Output: factorial of given number

1. Start.

2. Get the number nto which Factorial value is to be calculated.

3. Print Menu 1. Recursive function 2. Non-recursive function

4. If choice=1 then Call Factorial(n).

5. Else if choice=2 then Call NonRecFactorial(n)

6. Printf factorial Number

7. Stop

 Factorial(n) 1.Start

2. If n= 0 or 1 then fact=1

3. else fact= n* factorial(n-1)

4. return(fact)

http://en.wikipedia.org/wiki/Non-negative_integer
http://en.wikipedia.org/wiki/Product_(mathematics)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
4

 NonRecFactorial(n)

1.Start

2. for i=1 to i<=n do

3. fact=fact*i;

4. return (fact)

Sample Input:

Factorial of 5 is 120

Observed Output:

Output1:

Factorial of recursion and non recursion

 Enter the number 6

 Enter the choice 1

 Recursion Factorial of 6 is 720

Output 2:

Factorial of recursion and non recursion

 Enter the number 7

 Enter the choice 2

 Recursion Factorial of 7 is 5040

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
5

EX. NO: 2(B) GCD USING RECURSION AND NON-RECURSION

Aim:

Write recursive and nonrecurive C program for calculation of GCD (n, m)

Description:

In mathematics, the greatest common divisor (GCD), also known as the greatest common

factor (GCF), or highest common factor (HCF), of two or more non-zero integers, is the largest

positive integer that divides the numbers without a remainder

For example, the GCD of 8 and 12 is 4.

Algorithm:

/* GCD recursive and Non-Recursive */

Input: integer a, b

Output: GCD of a, b

1. Start.

2. Get two numbersm, n for which GCD is to be calculated.

3. Print Menu 1. Recursive function 2. Non-recursive function

4. If choice=1 then Call GCD(m,n).

5. Else if choice=2 then Call NonRec GCD(m,n).

6. Print GCD

7. Stop.

 GCD(int a, int b)

1.begin

2. if a = 0 then go to step3 else go to step4

3. return b

4. if b = 0 then go to step5 else go to step6

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Integer
http://en.wikipedia.org/wiki/Divisor
http://en.wikipedia.org/wiki/Remainder

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
6

5. return a

6. g= gcd_rec (b, a mod b)

7. return g

Sample Input:

GCD of 16 and 4 is: 4

Observed Output:

Computing GCD of TWO numbers

Enter two numbers 36 54

The Recursion GCD of 36 and 54 is 18

The Non-Recursion GCD of 36 and 54 is 18

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
7

EX. NO: 2(C) TOWERS OF HANOI USING RECURSION

Aim:

Write recursive C programme for Towers of Hanoi: N disks are to be transferred from peg S to peg

D with Peg I as the intermediate peg.

Description:

The Tower of Hanoi is a mathematical game or puzzle. It consists of three rods, and a number

of disks of different sizes which should be transferred from soruce to destination using the

intermediate rod. The puzzle starts with the disks in a neat stack in ascending order of size on one

rod, the smallest at the top, thus making a conical shape.The objective of the puzzle is to move the

entire stack to another rod, obeying the following rules:

 Only one disk may be moved at a time

 Each move consists of taking the upper disk from one of the rods and sliding into another

rod, on the top of the other disks that may be already present on the rod.

 No disk may be placed on top of a smaller disk.

 Source Intermediate Destination

Algorithm:

/* Towers of Hanoi recursive */

Input: integer n number of disks

Output:N disks are to be transferred from peg S to peg D with Peg I as the intermediate peg

1.Start

2. read n value as the no. of disks

3. call TOH(N, S, I, D).

4. Stop

http://en.wikipedia.org/wiki/Mathematical_game
http://en.wikipedia.org/wiki/Puzzle

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
8

 TOH(N, S, I, D)

1.begin

2. if n = 1 then

3. Transfer disk from S to D and stop

4. else

5. transfer N-1 disks from peg S to peg I with peg D as the intermediate peg

6. Call TOH(N-1, S, D, I)

7. Transfer disk from S to D

8. transfer N-1 disks from peg I to peg D with peg S as the intermediate peg

9. Call TOH(N-1, I, S, D);

10.end

Sample Input:

 ENTER NUMBER OF DISKS:3

Move diskA from S to D

Move diskB from S to I

Move diskA from D to I

Move diskC from S to D

Move diskA from I to S

Move diskB from I to D

Move diskA from S to D

Observed Output:

TOWERS OF HANOI

Enter the number of disks :3

Move disk-1 from S to D

Move disk-2 from S to I

Move disk-1 from D to I

Move disk-3 from S to D

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
9

Move disk-1 from I to S

Move disk-2 from I to D

Move disk-1 from S to D

Viva questions:

1. What actions are performed when a function is called?

3. What actions are performed when a function returns?

4. What is the logic of factorial function?

5. Give an example of finding factorial?

6. What is tail recursion

6. What is the logic of GCD?

7. Give an example for GCD

8. Explain input parameters of towers of Hanoi algorithm

9. What is formulae for finding the no of moves required for n disks in towers of Hanoi

problem

10. What is the data structures used to perform recursion?

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
10

EX. NO: 3(A) LINEAR SEARCH USING RECURSIVE & NON-

RECURSIVE FUNCTIONS

Aim:

Write C programs that use both recursive and non recursive functions to perform Linear search for a

Key value in a given list.

Description:

The linear search is most simple searching method. It does not expect the list to be sorted.

The key which is to be searched is compared with each element of the list one by one. If a match

exists, the search is terminated. If the end of list is reached it means that the search has failed and

key has no matching in the list.

Algorithm:

1.Start

2. Read the array size ‗n‘

3. Read elements into array ‗L‘

4. Read the key to be searched in array ‗K‘

5. Print Menu 1. Recursive function 2. Non-recursive function

6. Read the choice

7. if choice=1 then call pos = LINEAR_SEARCH_REC(L, n, K)

8. else if choice=2 then call pos = LINEAR_SEARCH_NONREC(L, n, K)

9. ifpos< 1 then print ‗ key not found‘

10. else print ‗key found in index position ‘, i

11. Stop

 LINEAR_SEARCH_NONREC(L, n, K) 1.i = 0

2. while ((i < n) and (K != L[i])) do

3. i = i + 1;

4. end while

5. if (K = L[i]) then print (― KEY found‖) and return (i)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
11

6. else print (― KEY not found‖)

7. Stop

 LINEAR_SEARCH_REC(L, n, K)

1.if (K = L[n-1]) then print (― KEY found‖) and return (n)

2.else if(n==0) then return(-1)

3. elsereturn LINEAR_SEARCH_REC(L, n-1, K)

Sample Input:

 Enter the size of array: 5

 Enter the elements: 65 78 2 1 9

Key : 2

 2 is found

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
12

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
13

EX. NO: 3(B) BINARY SEARCH USING RECURSIVE & NON- RECURSIVE

FUNCTIONS

Aim:

Write C programs that use both recursive and non recursive functions to perform Binary search for

a Key value in a given list.

Description:

 Binary search is a vast improvement over the sequential (Linear) search. For binary search

to work, the item in the list must be in a sorted order. The approach employed in the binary search is

divide and conquer. In binary search the list is divided into two half’s based on the MID value, and

the key is compared with the mid element. If it is successful then it returns the mid value, if the key

value is not found at mid then the search will proceed in any one of the half’s based on whether the

key element is greater or lesser than the mid element. If the list to be sorted for a specific item is not

sorted, binary search fails. The Mid value can be calculated by the formula:

MID= (HIGH+LOW)/2

Algorithm:

1.Start

2. Read the array size ‗n‘

3. Read elements into array ‗L‘

4. Read the key to be searched in array ‗K‘

5. low=0, high = N – 1

6. Print Menu 1. Recursive function 2. Non-recursive function

7. Read the choice

8. if choice=1 then call to the function pos = BINARY_SEARCH_REC(L, low, high, K)

9. else if choice=2 then pos = BINARY_SEARCH_NONREC(L, low, high, K)

10. ifpos< 1 then print ‗ key not found‘

11. else print ‗key found in index position ‘,i

12. Stop

 BINARY_SEARCH_NONREC(L, low, high, K)

1. begin

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
14

2. repeat steps 3 to 10 until low <= high

3. mid=(low+high)/2

4. if(K = L[mid])then go to step5 else go to step7

5. loc=mid

6. return loc

7. else if(K <L[mid]) then go to step8 else go to step9

8. high= mid-1 and go to step 10

9. low=mid+1

10. return -1

 BINARY_SEARCH_REC(L, low, high, K)

1.begin

2. if(low > high) then go to step3else go to step4

3. return -1;

4. mid
=
(low+high)/2;

5. if (K < L[mid]) then go to step6 else go to step7

6. return BINARY_SEARCH_REC (L, low, mid-1, K)

7. if(K > L[mid]) then go to step8 else go to step10

8. return BINARY_SEARCH_REC (L, mid+1, high, K)

9.if (K = L[mid]) then return mid

10. end

Sample Input:

 Enter the size of the array: 4

 Elements are: 23, 26, 29, 40

 Enter Key: 26

 Key is found at 1 position

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
15

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
16

EX. NO: 3(C) FIBONACCI SEARCH USING RECURSIVE & NON-

RECURSIVE FUNCTIONS

Aim:

Write C programs that use both recursive and non recursive functions to perform Fibonacci search

for a Key value in a given list.

Description:

A possible improvement in binary search is not to use the middle element at each step, but to

guess more precisely where the key being sought falls within the current interval of interest. This

improved version is called Fibonacci search. Instead of splitting the array in the middle, this

implementation splits the array corresponding to the Fibonacci numbers, which are defined in the

following manner:

 F0 = 0, F1 = 1

 Fn = Fn-1+Fn-2 for n>=2.

Algorithm:

1.Start

2. Read the array size ‗n‘

3. Read elements into array ‗L‘

4. Read the key to be searched in array ‗K‘

5. low=0, high = N – 1

6. Print Menu 1. Recursive function 2. Non-recursive function

7. Read the choice

8. if choice=1 then call to the function pos = FIBONACCI_SEARCH _REC(L, n, K)

9. else if choice=2 then pos = FIBONACCI_SEARCH _NONREC(L, n, K)

10. if pos< 1 then print ‗ key not found‘

11. else print ‗key found in index position ‘,i

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
17

12. Stop

 FIBONACCI_SEARCH _NONREC(L, n, K)

/*L[1:n] is a linear ordered (non-decreasing) list of data elements. n is such that k+1>(n+1).Also

Fk+m=(n+1). K is the key to be searched in the list. */

Obtain the largest Fibonacci number Fk closest to n+1;

p=Fk-1;

q=Fk-2; r=Fk-3;

m=(n+1)-(p+q);

if (k>L[p]) then

p=p+m;

found =false;

while ((p=!0) and (not found)) do

case: k=L[p]:

{

print (―key found‖); /* key found */

 found =true;

}

Case:k<L[p]:

 if (r=0) then p=0

 else

 {

 p=p-r; t=q; q=r; r=t-r;

 }

Case: k> L[p]:

 if (q=1) then p=0

 else

 {

 p=p+r; q=q-r; r=r-q

 }

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
18

end case

end while

if(found=false) then print (―key not found‖);

end FIBONACCI_SEARCH_NONREC.

 FIBONACCI_SEARCH_REC (L,n,k)

/*L[1:n] is a linear ordered (non-decreasing) list of data elements. n is such that k+1>(n+1).Also

Fk+m=(n+1). K is the key to be searched in the list. */

Obtain the largest Fibonacci number Fk closest to n+1;

p=Fk-1;

q=Fk-2; r=Fk-3;

m=(n+1)-(p+q);

if (k>L[p]) then p=p+m;

call pos=Fibsearch(L,key,p,q,r);

returnpos;

end FIBONACCI_SEARCH_REC.

Sample Input:

Enter Size of Array: 4

Enter the elements: 3 12 16 45

Enter the element want to search: 45

45 found at position 4

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
19

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
20

Viva questions:

1. What is sequential search?

2. What are the advantages of linear search

3. What are the advantages of linear search

4. Write the algorithm for sequential search

5. Time complexity of linear and binary search

6. What is the necessary condition to implement binary search on a list

7. Calculate the efficiency of sequential search?

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
21

EX. NO: 4(A) BUBBLE SORT

Aim:

Write C programs that implement Bubble sort, to sort a given list of integers in ascending order.

Description:

 Bubble sort is the simplest and oldest sorting technique. This method takes two elements at

a time. It compares these two elements. If first elements is less than second one, they are left un

disturbed. If the first element is greater then second one then they are swapped. The continues with

the next two elements goes and ends when all the elements are sorted. But bubble sort is an

inefficient algorithm. The order of bubble sort algorithm is O(n
2
).

Algorithm:

/* Bubble_ Sort */

Input: An integer n and a list of n elements stored in array elements a[0], . . . , a[n – 1]

Output: sorted array

1.Start

2. Read the size of the array ‗n‘

3. Read the elements of the array ‗ L‘

4. call BUBBLE_SORT(L,n)

5. print array ‗L‘

6. Stop

 BUBBLE_SORT(L,n)

/* L[1: n] is an unordered list of data elements to be sorted in the ascending order */

for i = 1 to n-1 do /* n – 1 passes */

for j = 1 to n-1 do

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
22

if(L[i] > L[j]) then

swap(L[i], L[j]); /* swap pair wise elements */

end /* the next largest element ―bubbles‖ to the last position */

end

end BUBBLE_SORT.

Sample Input:

Enter the array size: 3

Enter elements: 54 67 12

The sorted array is: 12 54 67

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
23

EX. NO: 4(B) QUICK SORT

Aim:

Write C programs that implement Quick sort, to sort a given list of integers in ascending order

Description:

This method is invented by hoare, considered to be fast method to sort the elements. The

method is also called partition exchange sorting. The method is based on divide and conquer

technique. i.e., the entire list is divided into various partitions and sorting is applied again and again

on the partition.

 In this method the list is divided into two based on an element called pivot element.

Usually the first element is considered to be the pivot element. Now move the pivot element to its

correct position in the list. The elements to the left and pivot element are less that this while the

elements to the right of pivot are greater than the pivot. The process is reapplied to each of these

partitions till we got the sorted list of elements.

Algorithm:

/* Quick _ Sort */

Input: An integer n and a list of n elements stored in array elements a[0], . . . , a[n – 1]

Output: sorted array

1.Start

2. Read the size of the array ‗n‘

3. Read the elements of the array ‗ L‘

4. call QUICK_SORT(L,n)

5. print array ‗L‘

6. Stop

 QUICK_SORT (L, first, last)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
24

/* L [first: last] is the unordered list of elements to be quick sorted. The call to the to sort the list

L [1: n] would be Quick _ SORT (L, 1, n) */

if (first < last) then

{

PARTITION (L, first, last, loc) ; /* partition the list into two sub lists at loc

/ QUICK_SORT (L, first, loc-1); / quick sort the sub list L[first, loc-1] */

QUICK_SORT (L, loc+1, last); /* quick sort the sub list L[Loc+1, last] */

}

end QUICK_SORT.

PARTITION(L,last,loc)

/* L[first :last] is the list to be participated. Loc is the position where the pivot element finally

settles down */

Left=first

right=last+1;

pivot_elt=L[first]; /* set the pivot element to the first element in list L */

while(left<right) do

repeat

left=left+1;

until L[left]>=pivot_elt;

 repeat

right=right-1;

 until L[right]<=pivot_elt;

if(left<right) then swap(L[left],L[right]);

/* arrows face each other */

end

Loc=right

Swap(L[first],L[right]);

/* arrows have crossed each other – exchange pivot element L[first] with L[right] */

end PARTITION

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
25

Sample Input:

Enter the array size: 3

Enter elements: 54 67 12

The sorted array is: 12 54 67

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
26

EX. NO: 4(C) INSERTION SORT

Aim:

Write C programs that implement Insertion sort, to sort a given list of integers in ascending order

Description: Insertion sort is similar to playing cards. To sort the cards in your hand you extract a

card shift the remaining cards and then insert the extracted card in its correct place. The efficiency of

insertion sort is O(n
2
).

Algorithm:

/* Insertion_ Sort */

Input: An integer n and a list of n elements stored in array elements a[0], . . . , a[n – 1]

Output: sorted array

1.Start

2. Read the size of the array ‗n‘

3. Read the elements of the array ‗ L‘

4. call INSERTION _SORT (L,n)

5. print array ‗L‘

6. Stop0

 INSERTION_SORT (L, n)

/* L (1: n) is an unordered list of data elements to be sorted in the ascending order */

for i=2 to n do /* n-1 passes*/

Key = L[i]; /* key is the key to be inserted and position its location in the unordered list*/

position = i;

/* compare key with its sorted sub list of predecessors for insertion at the appropriate

position */

While((position > 1) and (L [position –1] > Key) do

L[position] = L [position-1];

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
27

Position = position -1;

L[position] = Key;

end

end

End INSERTION_SORT.

Sample Input:

Enter the range of array:5

Enter elements into array:56 23 34 12 8

The sorted order is: 8 12 23 34 56

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
28

Viva questions:

1. What is sorting.

2. In to types the sorting techniques are classified

3. Name some sorting algorithms

4. What is the best case of Bubble sort

5. What is the worst case of Bubble sort

6. What is the best case of insertion sort

8. What is the worst case of insertion sort

9. What is the average case of insertion sort

10. What are the best, average and worst case of quick sort. Ans:

11. What are the steps in quick sort algorithm

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
29

EX. NO: 5(A) HEAP SORT

Aim:

Write C programs that implement heap sort, to sort a given list of integers in ascending order

Description:

Heapsort is a comparison-based sorting algorithm to create a sorted array (or list), and is part

of the selection sort family. Heapsort is a two step algorithm.

The first step is to build a heap out of data. The second step begins with removing the largest

element from the heap . We insert the removed element into the sorted array. For the first element

this would be the position of n-1 of the array. Next we reconstruct the heap and remove the next

largest item, and insert it into the array. After we have removed all the objects from the heap, we

have a sorted array. We can vary the direction of the sorted elements by choosing a min-heap or

max-heap in step one.

Algorithm:

/* Heap_ Sort */

Input: An integer n and a list of n elements stored in array elements a[0], . . . , a[n – 1]

Output: sorted array

1.Start

2. Read the size of the array ‗n‘

3. Read the elements of the array ‗ L‘

4. call HEAP_SORT(L,n)

5. print array ‗L‘

6. Stop

 HEAP_SORT (L, n)

/* L [1: n] is the unordered list to be sorted. The output list is returned in L itself */

CONSTRUCT_HEAP (L, n); /* construct the initial heap out of L[1:n] */

BUILD_TREE (L, n); /* output root node and reconstruct heap */

end HEAP_SORT.

http://en.wikipedia.org/wiki/Comparison_sort
http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Sorted_array
http://en.wikipedia.org/wiki/Selection_sort

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
30

 BUILD_TREE (L, n)

for end _node _index = n to 2 step-1 do

{

swap(L[1],L[end _node _index]; /* swap root node with the largest */

RECONSTRUCT_HEAP (L, end_ node_ index); /* for reconstructing heap */

}

end BUILD_TREE.

 RECONSTRUCT_HEAP (L, end _node _index)

Heap = false ;

parent _ index = 1;

child _ index = parent _ index * 2;

while (not heap) and (child _ index < end _node _index) do

right _child _index = child _ index + 1;

if (right_ child_ index < end_ node_ index) then

/*choose which of the child nodes are greater than orequal to the parent /*

if (L[right_ child _index] > end_ node_ index]) then

child _index = right _child _index;

if (L[child _ index]> L[parent_ index])then

{

swap (child_ index], L[parent_ index]) ;

parent _index = child _index]

Child _index =parent _index * 2;

}

else heap = true;

 end

end RECONSTRUCT_HEAP.

 CONSTRUCT_HEAP (L, n)

/* L[1 : n] is a list to be constructed into a heap */

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
31

 for child_ index = 2 to n do

INSERT_HEAP (L, child_index); /* insert elements one by one into the heap /*

end

end CONSTRUCT_HEAP.

Sample Input:

Enter array size 7

Enter any 7 elements 23 12 1 4 2 45 3

 After sorting, the element are 1 2 3 4 12 23 45

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
32

EX. NO: 5(B) RADIX SORT

Aim:

Write C programs that implement radix sort, to sort a given list of integers in ascending order

Description:

Radix sort is one of the linear sorting algorithms for integers. It functions by sorting the input

numbers on each digit, for each of the digits in the numbers. Here the numbers are sorted on the

least-significant digit first, followed by the second-least significant digit and so on till the most

significant digit.

The Time Complexity of Radix sort is O(n).

Algorithm:

/* Radix_ Sort */

Input: An integer n and a list of n elements stored in array elements a[0], . . . , a[n – 1]

Output: sorted array

1.Start

2. Read the size of the array ‗n‘ and number of digits ‗d‘

3. Read the elements of the array ‗ L‘

4. call radixsort(L, n, 10, d)

5. print array ‗L‘

6. Stop

radixsort(L, n, r, d)

/* radix sort sorts a list L of n keys, each comprising d digits with radix r
*
 */

Initialize each of the Q[0:r-1] linked queues representing the bins to be empty;

For i = d to 1 step -1 /* for each of the d passes over the list */

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
33

Sort the list L of n keys Ki=k1k2k3…..kd based on the digit i, inserting each of the keys K into

the linked queue Q [ki],

/* distribute the keys into Q [0 : (r-`)] based on the radix value of the digits */

Delete the keys from the queues Q [0: r-1] in order, and append the elements to the output list L;

end;

Return (L);

 end radixsort.

Sample Input:

Enter the number of elements: 6

Enter elements: 12 1 98 23 65 34

The Sorted array is 1 12 23 34 65 98

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
34

EX. NO: 5(C) MERGE SORT

Aim:

Write C programs that implement merge sort, to sort a given list of integers in ascending order

Description:

 The sorting algorithm Merge sort produces a sorted sequence by sorting its two halves

 and merging them. With a time complexity of O(nlog(n)) merge sort is optimal. Similar to the

quick sort, the merge sort algorithm is based on a divide and conquer strategy first, the sequence to

be sorted is decomposed into two halves (Divide). Each half is sorted independently (Conquer).

Then the two sorted halves are merged to a sequence

Algorithm:

/* Merge_ Sort */

Input: An integer n and a list of n elements stored in array elements a[0], . . . , a[n – 1]

Output: sorted array

1.Start

2. Read the size of the array ‗n‘

3. Read the elements of the array ‗ L‘

4. call MERGE _SORT(L,1,n)

5. print array ‗L‘

6. Stop

 Merge (x, first, mid, last)

/* x [first: mid] and x[mid+1:last] are ordered lists of data elements to be merged into a single

ordered list x[first : last] */

first1 = first;

 last1 =mid;

 first2 = mid +1;

last2 = last; /* set the beginning and the ending indexes of the two lists into the appropriate

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
35

variables* /

i=first; /* i is the index variable for the temporary output list tem */

/* begin air wise comparisons of elements from the two lists */

While (first1<=last1) and (first2<=last2) do

case: X[first1]<X[first2]:

{

temp[i]=X[first1];

first1= first1+1;

 i=i+1;

 }

Case : X[first1]>X[first2]:

{

{temp[i]=X[first2];

 first2=first2+1 ;

 i=i+2;

 }

Case : X[first1]=X[first2]: temp[i]=X[first1];

 { temp[i+1]=X[first2];

 first1=first1+1;

 first2=first2+1;

 i=i+2; }

 end /* end case */

end /* end while */

/* the first list gets exhausted */

while (first2<=last2) do

temp[i]=X[first2];

first2=first2+1;

i=i+1;

end

/* the second list gets exhausted */

while (first1<=last1) do

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
36

temp[i]=X[first1];

first1=first1+1;

i=i+1;

end

/* copy list temp to list x */

for j=first to last do

X[j]=temp[j]

end

end MERGE.

 MERGE_SORT(a, first, last)

/* a(first : last) is the unordered list of elements to be merge sorted .The call to the to sort the

list a[1 : n] .would be MERGE_SORT(a, 1, n) */

If (first < last) then

{

mid=[(first + last)/2]; /* divide the list into two sub lists */

MERGE_SORT (a, first, mid); /*merge sort the sub list a [first ,mid] */

MERGE_SORT (a, mid+1, last); /* merge sort the sub list a [mid+1, last] */

MERGE (a, first, mid, last); */ merge the two sub lists a [first, mid] and a[mid+1, last] */

}

end MERGE SORT.

Sample Input:

 Enter the size of array: 4

 Enter the elements: 15 4 23 2

 The sorted array is: 2 4 15 23

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
37

Observed Output:

Viva questions:

1. What is sorting?

2. Differentiate between sorting and searching.

3. What is a pass?

4. What is worst case and average case complexities of heap sort?

5. What are the best, worst case and average case complexities of radix sort?

6. What is best case complexity of merge sort?

7. What is worst case and average case complexities of merge sort?

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
38

EX. NO: 6(A) STACK USING ARRAY

Aim:

Write C programs that implement stack (its operations) using arrays

Description:

Stack is a linear data structure where it restricts operations to only one end.

That end is called as “TOP”. Stack works on the principle of “last in first out” (LIFO). Operations

to insert an element are stack is called “PUSH”. And deleting an element from stack is called

“POP”.

Algorithm:

/*Implementation of push operation on a stack */

 PUSH(STACK, n, top, item)

if (top = n) then STACK_FULL;

else

{

top = top + 1;

STACK[top] = item; /* store item as top element of STACK */

}

end PUSH

/*Implementation of pop operation on a stack; */

 POP(STACK, top, item)

if (top = 0) then STACK_EMPTY;

else

{

 item = STACK[top];

top = top - 1;

}

end POP

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
39

 Display() if top = -1

then

print ‗ Stack is empty‘

else

{

i=0;

while(top>0) do

print ‗stack[i];

i++;

end while.

}

end Display.

Sample Input:

 Menu

 1.push

 2.pop

 Enter your choice 1

 Enter the element to insert 50

 Do you wish to continue press y for yes and n for no: y

 Menu

 1.push

 2.pop

 Enter your choice 1

 Enter the element to insert 20

 Do you wish to continue press y for yes and for no:n

Stack elements are : 20 50

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
40

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
41

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
42

EX. NO: 6(B) STACK USING LINKED LISTS

Aim:

Write C programs that implement stack (its operations) using Linked list

Description:

The major problem with the stack using array is, it works only for fixed amount of numbers

of data values. That means the amount of data must be specified at the beginning of the

implementation itself. Stack implemented using array is not suitable, when we don’t know the size

of the data which we are going to use. A stack data structure can be implemented by using linked list

data structure. The stack implemented using linked list can work for unlimited number of values.

That means the stack implemented using linked list can work for variable size of data. So there is no

need to fix the size at the beginning of implementation.

Algorithm:

Algorithm: Push item ITEM into a linked stack S with top pointer TOP

PUSH_LINKSTACK (TOP, ITEM)

/* Insert ITEM into stack */

Call GETNODE(X)

DATA(X) = ITEM /*frame node for ITEM */

LINK(X) = TOP /* insert node X into stack */

TOP = X /* reset TOP pointer */

end PUSH_LINKSTACK.

Algorithm: Pop from a linked stack S and output the element through ITEM

POP_LINKSTACK(TOP, ITEM)

/* pop element from stack and set ITEM to the element */

if (TOP = 0) then call LINKSTACK_EMPTY

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
43

/* check if linked stack is empty */

else {

TEMP = TOP

ITEM = DATA(TOP)

TOP = LINK(TOP)

}

call RETURN(TEMP) ;

end POP_LINKSTACK.

Algorithm for display

 Display()

ptr

top

ifptr NULL then

print ‗ Stack is empty‘

else

{

While(ptr!=NULL) do

print ‗ptr-> item‘

ptr=ptr-> next

end while.

}

end Display.

Sample Input:

 Linked stack

1. Push

2. Pop

3. Display

 Enter your choice 1

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
44

 Enter the number 18

 Linked stack

1. Push

2. Pop

3. Display

 Enter your choice 3

 Stack elements: 18

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
45

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
46

Viva questions:

1. What is stack?

2. What is the difference between a Stack and an Array?.

3. Give real time and system examples of stack?

4. What is meant by push and pop?

5. When overflow will occur in stack?

6.. What is the significance of top pointer?

7. State different applications of stack.

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
47

EX. NO: 7(A) CONVERT INFIX EXPRESSION INTO POSTFIX EXPRESSION

Aim:

Write a C program that uses Stack operations to convert infix expression into postfix expression

Description:

In normal algebra we use the Infix notation like a+b*c. The corresponding Postfix expression

will look like abc*+.

In order to define the program, we will assume the following functions

 ReadSymbol(): From given Infix expression, this will read the next symbol

 ISP(X): Returns the in-stack priority for a symbol of X

 ICP(X): This function returns the in-coming priority value for a symbol X

 OUTPUT(X): Append the symbol into the resultant expression.

Algorithm:

1. Push ―(‖ onto stack, and add―)‖ to the end of P.

2. Scan P from left to right and repeat Steps 3 to 6 for each element of P until the stack is empty.

3. If an operand is encountered, add it to Q.

4. If a left parenthesis is encountered, push it onto stack.

5. If an operator ⊗ is encountered, then:

(a) Repeatedly pop from stack and add P each operator (on the top of stack), which has the

same precedence as, or higher precedence than ⊗.

(b) Add ⊗ to stack.

6. If a right parenthesis is encountered, then:

(a) Repeatedly pop from stack and add to P (on the top of stack until a left parenthesis is

encountered.

(b) Remove the left parenthesis. [Do not add the left parenthesis to P.]

7. Exit.

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
48

Sample Input:

 Read the infix expression a+b*c-d

 Given infix expression: a+b*c-d

 Postfix expression: abc*c+d-

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
49

EX. NO: 7(B) QUEUE USING ARRAYS

Aim:

Write C programs that implement Queue (its operations) using arrays.

Description:

Queue is a linear data structure where operations are done at two ends. The end where

element is intersected is called as “REAR”. The end where element is deleted is called as “FRONT”.

Queue works on the principle of “FIRST IN FIRST OUT”. Operations to insert an element in queue

are called ENQUEUE. And deleting an element from queue is called “DEQUEUE”

Algorithm:

/*Implementation of an insert operation on a queue */

 INSERTQ (Q, n, ITEM, REAR)

/* insert item ITEM into Q with capacity n */

if (REAR = n) then QUEUE_FULL;

REAR = REAR + 1; /* Increment REAR*/

Q[REAR] = ITEM; /* Insert ITEM as the rear element*/

end INSERTQ

/*Implementation of a delete operation on a queue */

 DELETEQ (Q, FRONT, REAR, ITEM)

if (FRONT =REAR) then QUEUE_EMPTY;

FRONT = FRONT +1;

ITEM = Q[FRONT];

end DELETEQ.

/*Implementation of Display*/

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
50

 Display() if front = -

1 then

print ‗Queue is empty‘

else

{

i=front+1;

while(i< rear) do

print queue[i]

i++;

end while

end Display.

Sample Input:

 Menu

1. Insert

2. Delete

 Enter your choice 1

 Enter the element to insert 23

 Do you wish to continue press Y for yes n for no: Y

 Menu

1. Insert

2. Delete

 Enter your choice 1

 Enter the element to insert 18

 Do you wish to continue press Y for yes n for no: Y

 Menu

1. Insert

2. Delete

 Enter your choice 2

 Element deleted is 23

 Do you wish to continue press Y for yes n for no: N

The element is queue are 18

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
51

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
52

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
53

EX. NO: 7(C) QUEUE USING LINKED LISTS

Aim:

Write C programs that implement Queue (its operations) using linked lists

Descritpion:

Queue is a particular kind of abstract data type or collection in which the entities in the

collection are kept in order and the principal (or only) operations on the collection are the addition of

entities to the rear terminal position, known as enqueue, and removal of entities from the front

terminal position, known as dequeue. This makes the queue a First-In-First-Out (FIFO) data

structure. Linked list is a data structure consisting of a group of nodes which together represent a

sequence. Here we need to apply the application of linkedlist to perform basic operations of queue.

Algorithm:

Algorithm: Push item ITEM into a linear queue Q with FRONT and REAR as the front and rear

pointer to the queue

 INSERT_LINKQUEUE(FRONT,REAR,ITEM) Call

GETNODE(X);

DATA(X)= ITEM;

LINK(X)= NIL; /* Node with ITEM is ready to be inserted into Q */

if (FRONT = 0) then FRONT = REAR = X;

/* If Q is empty then ITEM is the first element in the queue Q */

else {LINK(REAR) = X;

REAR = X

}

end INSERT_LINKQUEUE.

Algorithm: Delete element from the linked queue Q through ITEM with FRONT and REAR as

the front and rear pointers

 DELETE_LINKQUEUE (FRONT,ITEM)

if (FRONT = 0) then call LINKQUEUE_EMPTY;

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
54

/* Test condition to avoid deletion in an empty queue */

else {TEMP = FRONT;

 ITEM = DATA (TEMP);

 FRONT = LINK (TEMP);

 }

call RETURN (TEMP); /* return the node TEMP to the free pool */

end DELETE_LINKQUEUE.

Algorithm: Display the Queue

 display()

 Temp
=
front

if(temp = = NULL)

print ―queue is empty‘

else

while (temp->next!=NULL) do

print temp->item

temp
=
temp->next

end while

end if.

end display.

Sample Input:

 Linked queue

1. Enqueue

2. Dequeue

3. Display

 Enter your choice: 1

 Enter the item 48

 Linked queue

1. Enqueue

2. Dequeue

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
55

3. Display

 Enter your choice: 1

 Enter the item 8

 Linked queue

1. Enqueue

2. Dequeue

3. Display

 Enter your choice: 2

 Deleted element is 48

 Linked queue

1. Enqueue

2. Dequeue

3. Display

 Enter your choice 3

 The elements are 8

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
56

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
57

Viva questions:

1. What is a linear queue?

2. What is rear and front pointer?

3. Give real time and system example of queue?

4. Give array representation of queue?

5. What happened if Rear=MAXSIZE?

6. What is meant by binary expression?

7. What is meant by prefix expression?

8. What is meant by infix expression?

9. What is meant by postfix expression?

10. Convert the following infix expression into postfix expression A+(B*C–(D/E^F)*G)*H

11. What is a priority queue?

12. What are the disadvantages of sequential storage?

13. What are the disadvantages of representing a stack or queue by a linked list?

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
58

EX. NO: 8 SINGLE LINKED LIST

Aim:

a) Write a C program that uses functions to create a singly linked list

b) Write a C program that uses functions to perform insertion operation on a singly linked list

c) Write a C program that uses functions to perform deletion operation on a singly linked list

Description:

Linked lists are among the simplest and most common data structures. They can be used to

implement several other common abstract data types, including stacks, queues, associative arrays,

and symbolic expressions, The principal benefit of a linked list over a conventional array is that the

list elements can easily be inserted or removed without reallocation or reorganization of the entire

structure because the data items need not be stored contiguously in memory or on disk. Linked lists

allow insertion and removal of nodes at any point in the list, and can do so with a constant number

of operations if the link previous to the link being added or removed is maintained during list

traversal.

On the other hand, simple linked lists by themselves do not allow random access to the data,

or any form of efficient indexing. Thus, many basic operations — such as obtaining the last node of

the list (assuming that the last node is not maintained as separate node reference in the list structure),

or finding a node that contains a given datum, or locating the place where a new node should be

inserted — may require scanning most or all of the list elements.

Algorithm:

/* Singly_linkedlist */

declare struct linkedlist

integer data

struct linkedlist *next

typedef struct linkedlist node; Step 1:

Start

Step 2:head
=
NULL

Step3: repeat steps from 3 to 12 if ch!=9

http://en.wikipedia.org/wiki/Abstract_data_type
http://en.wikipedia.org/wiki/Stack_data_structure
http://en.wikipedia.org/wiki/Queue_(data_structure)
http://en.wikipedia.org/wiki/Associative_array
http://en.wikipedia.org/wiki/Symbolic_expression
http://en.wikipedia.org/wiki/Array_data_structure
http://en.wikipedia.org/wiki/Random_access

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
59

Diplay the Menu and Read the value of ch

1. Append 2.Display All 3.Insert after a specified node

4. Insert before a specified node 5.Delete a node after a specific node

6. Search a node in the list 7.Count the nodes in the list

8. Distroy the list 9.Exit program

Step 4:If ch=1 call append(&head) function

Step 5:If ch=2 call display(head) function

Step 6:If ch=3 call insert_after(&head) function

Step 7:If ch=4 call insert_before(&head) function

Step 8: if ch=5 call del_after(&head) function

Step 9: if ch=6 call search(head) function

Step 10: if ch=7 call count(head) function

Step11: if ch=8 call destroy(&head) function

Step12: if ch=9 call exit function

Step 13:Stop

Algorithm

createnode()

 //input: nothing

//output: assign a node null and returns that node after allocating it

memorydynamically.

Step 1: Allocate the memory for new node

Step 2: Read value of item

Step 3:Assign values to NEW node data part

Step 4:Assign NEW node address part as null

Step5: return NEW node

Algorithm append (node **head)

//Input: address of the head node which inturn has the address of first node of the list.

//output: adds a node to end of the list.

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
60

Step1: NEW
=
 createnode()

Step2: if head = NULL then do

Step3 else goto step4 Step3: head = NEW and return

Step4: temp = head

Step5: repeat

Step 6 : until temp
=
next!=NULL

Step7: temp = temp
→

next

Step8: temp
→

next = NEW

Step9: stop

Algorithm display(node *p)

//input: address of the head node

//output: displays the content of the linked list

Step1: print ‗Contents of the List‘

Srep2: if (p=NULL) then print ‗List is empty‘ and return

Step3: repeat steps from 4 to 5 until p!=NULL

Step4: print p
->

data

Step5: p = p
->

next;

Step6: stop

Algorithm insert_before(node **h) //input:

address of the head node

//output: inserts a node before a node containing specific data. Step1.

temp
=
((*h)

->
next)

Step2. prev
=
 (*h)

Step3. while temp!= null and temp
->

 data !=k) do

Step4. prev = temp

Step5. temp
=
(temp

->
next)

Step6. end while

Step7. if temp!= null then do

Step8. new
=
createnode()

Step9. (new next) temp;

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
61

Step10.(prev next) new;

Step11 End. Insert_before.

Algorithm for insert_before()

Step1: if(*h==NULL) then return

Step2: read ‗k‘ the data of node before which node

Step3: if((*h)
->

data == k) then goto step4 else goto step7

Step4: NEW = createnode()

Step5: NEW
->

next = *h

Step6: *h = NEW and return

Step7: temp = (*h) next; prev = *h;

Step8: repeat step 9 to 10 until temp!=NULL && temp->data!=k

Step9: prev=temp

Step10: temp=temp
->

next

Step11: if(temp!=NULL) then goto step12 else goto step15

Step12: NEW = createnode()

Step13: NEW
->

next = temp

Step14: prev
->

next = NEW

Step15: stop

Algoritm insert _after(node **h)

//input : address of the header node

//output : inserts a node after a node containing specific data.

Step1. Start

Step2. Declarenode * temp, * new

Step3. If *h =null then do

return

Step4. Read k

Step5. Temp
=
 *h

Step6. While temp!=null and temp ->data!=k do

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
62

Step 7. Temp
=
(temp

->
next);

Step8. End while.

Step9. If temp != null then do

Step10.New
=
createnode()

Step11.(new
->

next)
=
(temp

->
next)

Step12.(temp
->

next)
=
 new

Step13.End insert_after

Algorithm delete_after(node **h)

//input: address of first node

//output: node is deleted after a node containing specific data.

Step1. Start

Step2. Declare node *temp, *p

Step3. *p null

Step4. If *h=null then do

Step5. Return

Step6. Read k

Step7. Temp
=
*h

Step8. While temp != null temp
->

 data!= k do

Step9. Temp
=
(temp

->
next)

Step10.End while.

Step11.If temp != null then do

Step12.
*
(temp

->
next)

Step13.(temp
->

next)
=
 (p

->
 next)

Step14.Print ―deleted node‖

Step15.Free(p);

Step16.End. Delete _after.

Algorithm destroy (node **h)

//input: address of the head node

//output: destroy the linked list

Step1. Start

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
63

Step2. Declare node *p;

Step3. If *h != null then do

Return

Step4. While (*h != null) then do

Step 5. P
=
(*h)

->
next

Step 6. Free(*h);

Step 7. *h =p;

Step 8. End while

Step 9. End destroy.

Algorithm count (node **h)

//input: address of the head node

//output: returns the count of nodes

Step 1. Start

Step 2. I=0

Step3. While h!= null do

Step4. H
=
(h

-
>next)

Step5 I
=
i+1

Step 6 end while

Step 7 return i

Step8 count.

Algorithm for insert_before()

Step1: if(*h==NULL) then return

Step2: read the data of node before which node

Step3: if((*h)
=
data == k) then goto step4 else goto step7

Step4: NEW = createnode()

Step5: NEW
=
next = *h

Step6: *h = NEW and return

Step7: temp = (*h)
->

next; prev = *h;

Step8: repeat step 9 to 10 until temp!=NULL && temp->data!=k

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
64

Step9: prev=temp

Step10: temp=temp->next

Step11: if(temp!=NULL) then goto step12 else goto step15

Step12: NEW = createnode()

Step13: NEW->next = temp

Step14: prev->next = NEW

Step15: stop

Sample Input:

 1.Add at beginning

 2.Add at location

 3. Add at end

 4.Deletion

 5.Display

 6. exit

 Enter your choice : 1

 Enter the value : 33

1. Add at beginning

2. Add at location

3. Add at end

4. Deletion

5. Exit

 Enter your choice : 1

 Enter the value : 38

 Add at beginning

1. Add at location

2. Add at end

3. Deletion

4. Display

5. Exit

 Enter your choice : 1

 Enter the value : 40

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
65

1. Add at beginning

2. Add at location

3. Add at end

4. Deletion

5. Display

6. Exit

 Enter your choice : 5

The elements in single linked list: 33 38 40

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
66

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
67

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
68

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
69

Viva Questions:

1. Describe the steps to insert data into a singly linked list.

2. Explain how to reverse singly link list.

3. Define circular linked list.

4. Define circular linked list.

5. Implement a linked list in C using a struct. Have the data be integers.

6. What is difference between Singly Linked List and Doubly Linked List data structure?

7. How to insert a node at the beginning of the list?

8. . How to represent a linked list node?

10. Graphically represent a linked list

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
70

EX. NO: 9(A) ADDITION OF TWO LARGE INTEGERS USING LINKED LIST

Aim:

Write a C program for adding two large integers which are represented in linked list fashion.

Description:

Given two linked list, each node contains one digit number, we need to add these two linked

list. Result should be stored in third linked list. It should be noted that the head node contains the

most significant digit of the number. For example, two numbers 12345 and 56789 are represented in

form of linked list as follows:

First List: 1->2->3->4->5->NULL

Second List: 5->6->37->8->9->NULL

Resulting linked list should be: 6->9->1->3->4->NULL

Algorithm:

Step1: declare a structure for creating a node

Step2: declare the following functions

get_node();//function to allocate memory to a node

 read_num(node *head1);// function to read the number from a node

display_num(node *temp,node *head);//function to display the result

Sum(node *head1,node *head2,node *head3);//function to add those two

Step3: Allocate memory for three header nodes and keep a negative number(-999) in their last node.

Step4: Read the first number and keep it in a linked list format where each node carries one digit. The

first node of this list is head1.

Step5: Read the second number and keep it in a linked list format where each node carries one

digit.the first node of this list is head2.

Step6: Add the to linked list nodes one by one with the carry if any

Step7: Store the result in a third linked list

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
71

Step8: Display the resultant list(third list).

Step9: stop.

Sample Input:

Enter the first number a= 2->1->7

Enter the second number b= 3->4

Result= 2->5->1

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
72

EX. NO: 9(B) REVERSE ELEMENTS OF A SINGLE LINKED LIST

Aim:

Write a C programme to reverse elements of a single linked list.

Description:

 Reversing the linked list starting from the very first node – the head node. What it basically

comes down to is changing pointers from one node to the next so that the entire linked list becomes

reversed. There is definitely a processm that we will want to follow in order to do that:

1. The head node’s next pointer should be set to NULL since the head will become the tail. This is

an exception for the head node, and can be done outside the while loop. But, before we do this we

will need a temp variable to point to the 2nd node (the node after the head node), because the only

way to reference the 2nd node is through the head node’s next pointer.

2. The 2nd node (the node after the head node) should have it’s own next pointer changed to point to

the head node. This will reverse the order of the nodes. But, remember that the 2nd node’s next

pointer will at first be pointing to the 3rd node. This means that before we change the 2nd node’s

next pointer, we have to save a reference to the 3rd node otherwise we will have no way of

referencing the 3rd node. So, we simply store a reference to the 3rd node in a variable before we

change the 2nd node’s next pointer.

3. The 3rd node then becomes the “first” node in the while loop and we repeat the process of

changing pointers described in step 2.

4. Continue step 3 until we come across a node that has a next pointer set to NULL. When we do

come across a NULL next pointer we just set the head node to point to the node that has the NULL

next pointer. This node was previously the tail node, but is now the head node because we are

reversing the linked list.

Algorithm:

struct node

{

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
73

int info;

struct node *link;

};

//create a node

typedef struct node *NODE;

NODE *first;

Algorithm for main function

Step 1: print the number of elements in the list

Step 2: read n

Step 3: i=1

Step 4: repeat the following until i<=n

Print ‗Enter the item to be inserted

Read x

Call function insert(x)

 i=i+1

Step 5: call function display ()

Step 6: call function reverse ()

Step 7: print ‗after reversing‘

Step 8: display ()

Step 9: stop

Algorithm for insert a new node - insert()

Step 1: call function for allocating memory space for element-

temp=getnode()

Step 2: temp->info-I;

Step 3: temp->link=NULL

Step 4: check whether the list is empty or not, if empty then make temp as first node

Otherwise add temp node to list

if(first==NULL)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
74

{

first=temp; return ;

}

Step 5: cur=first;

Step 6: add the temp at the end of the list, to reach the end do the following steps

while(cur->link!=NULL)

cur=cur->link;

Step 7: now add the temp at the end

 cur->link=temp

Step 8: stop

Algorithm for getnode(int info)

Step 1: create a new node

NODE x;

x=(struct llist *)malloc(sizeof(Struct llist));

Step 2: check overflow

if x==NULL print overflow;

return;

Step 3: if memory available then

return x

Algorithm for reverse a list—reverse()

Step 1: create three nodes

NODE p,q,r;

Step 2: keep the p=first;

Step 3: if it is not the last element in the

list if(p&&p->link)

{

q=p->link;

 while(q->link)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
75

{

r=q->link;

q->link=p;

p=q;

q=r;

}

q->link=p;

first->link=NULL;

first=q;

}

return;

}

Algorithm for display()

Step 1: if(first==NULL) then

printf("LIST EMPTY\n"); return;

Step 2: print ‗The contents of the list are‘

temp=first;

while(temp!=NULL)

{

printf("%d\t",temp->info);

temp=temp->link;

}

Step 3: stop.

Sample Input:

Enter no of elements: 4

Enter elements: 1 2 3 4

The elements are 1 2 3 4

After reversing 4 3 2 1

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
76

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
77

EX. NO: 9(C) STORE A POLYNOMIAL EXPRESSION IN MEMORY USING LINKED

LIST

Aim:

Write a C programme to store a polynomial expression in memory using linked list

Description:

A polynomial may also be represented using a linked list. A structure may be defined such

that it contains two parts- one is the coefficient and second is the corresponding exponent. The

structure definition may be given as shown below:

Struct polynomial

{

int coefficient;

int exponent;

struct polynomial *next;

};

Thus the above polynomial may be represented using linked list as shown below:

Algorithm:

/* algorithm for storing a polynomial expression in memory using linked list*/ Declare

structure:

Struct node

{

float coeff;

int exp;

struct node * link;

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
78

};

typedef struct node * node;

Node first= null;

1: start

2: declare p g node type

3: declare ch, I, new integer type and assign i
=
1

4: declare c g float type

5: read n.

6: while i<=n

6.1: read c, e

6.2: increment I by 1

6.3: if first!=0 then

6.3.1: assign p
=
first

6.3.2: while(p
->

link)!=0

do

6.3.3: p
=
(p

->
link)

6.3.4: allocate memory to p
->

link using getnode()

6.3.5: assign p
=
(p

->
link)

6.3.6: (p
->

coeff)
=
c and (p

->
exp)

=
e

6.3.7: assign (p
->

link)=null

6.3.8:end if.

6.4 : else do

6.4.1 : (first)
=
getnode().

6.4.2 : (first
->

 coeff)
=
c.

6.4.3 : (first
->

 link)
=
null

6.4.4 : end else

7. end while

8. call display() function.

9. end.

Algorithm for getnode()

//output: allocates memory to a pointer type variable in the system memory.

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
79

1. Start

2. Declare ‗x‘ of node type

3. Allocate memory tox using ‗malloc‘ library function

The syntax follows

=(node) malloc (size of (struct node));

4. If x=null then

Print ―memory cannot be allocated‖.

4.1 call exit (0).

4.2 End if

5. Return the value of x.

6. End.

Algorithm for display()

//output: displays the content of the linked list.

1. Start

2. Declare temp of node type

3. If first=null

3.1.1 print ―list is empty‖

3.1.2 return.

3.1.3 end if

4. Assign temp
=
 first.

5. While temp!= 0 do

5.1: temp
=
(temp

->
link)

 5.2: end while.

6. end.

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
80

Sample Input:

 Enter the number of terms: 3

 Enter the coefficient and exponent 3 2

 Enter the coefficient and exponent 2 1

 Enter the coefficient and exponent 8 0

 Polynomial expression is : 3x^2+2x^1+8x^0

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
81

EX. NO: 9(D) REPRESENT THE GIVEN SPARSE MATRIX USING ARRAYS

Aim:

Write a C programme to representation the given sparse matrix using arrays.

Description:

A matrix that has relatively few non-zero entries. It may be represented in much less than n ×

m space. An n × m matrix with k non-zero entries is sparse if k << n × m. It may be faster to

represent the matrix compactly as a list of the non-zero indexes and associated entries, as a list of

lists of entries (one list for each row), coordinate format (the values and their row/column positions),

or by a point access method.

Algorithm:

/*Algorithm for main function*/

Step 1 print ‗Enter matrix size as mxn\t: :‘

Step 2 read m,n values set count=0, k=1,i=0.

Step 3. Repeat step 3 until i<m

 Step 3.1. Repeat step 3.1 until j<n

Step 3.1.1 printf ‘nelementA ,i,j‘

Step 3.1.2 read a[i][j]

Step 4 assign i=0,j=0;

Step 5. Repeat step 5 until i<m

Step 5.1 Repeat step 5.1 until j<n

Step 5.1.1 check a[i][j] !=0 if true

Step 5.1.1.1 assign spm[k][0]=I ,spm[k][1]=j,spm[k++][2]=a[i][j].

 Step 5.1.1.2 increment count

Step 6. assign spm[0][0]=m, spm[0][1]=n, spm[0][2]=count.

Step 7. Printf ‗nsparse matrix is : :\n‘

Step 8. Repeat step 8 until i<m

 Step 8.1.Repeat step 8.1 until j<n

Step 8.1.1 printf ‘spm[i][j \n]

http://www.nist.gov/dads/HTML/matrix.html
http://www.nist.gov/dads/HTML/list.html
http://www.nist.gov/dads/HTML/pointAccessMethod.html

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
82

Step 9 getch();

Sample Input:

Enter the no of rows: 3

Enter the no of columns: 3

Enter the elements in the array :

1

0

7

5

0

0

3

4

7

 Elements of the matrix:

 1 0 7

 5 0 0

 3 4 7

Elements of sparse matrix:

 0 0 1

 0 2 7

 1 0 5

 2 0 3

 2 1 4

 2 2 7

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
83

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
84

EX. NO: 9(E) REPRESENT THE GIVEN SPARSE MATRIX USING LINKED LIST

Aim:

Write a C programme to representation the given sparse matrix using linked list.

Description:

A matrix that has relatively few non-zero entries. It may be represented in much less than n ×

m space. An n × m matrix with k non-zero entries is sparse if k << n × m. It may be faster to

represent the matrix compactly as a list of the non-zero indexes and associated entries, as a list of

lists of entries (one list for each row), coordinate format (the values and their row/column positions),

or by a point access method. It is implemented with linked list

Algorithm:

struct spars

{

int row,col,item;

 struct spars*next; }ptr;

structhead_sp

{ introws,col,item;

 struct spars * next; }*header;

1. Start

2. Declarei,j as integer type

3. Allocating memory to the header pointerusingmalloc function syntax

follows Header=(structhead_sp*)malloc(sizeof(structhead_sp));

4. Read header
->

rows, heade
->

cols, header
->

items;

5. If(header
->

item)=0 then

5.1. Exit(0);

5.2. End if

6. Allocate memory to (header_next) (struct spars*)maloc(sizeof(struct spars));

http://www.nist.gov/dads/HTML/matrix.html
http://www.nist.gov/dads/HTML/list.html
http://www.nist.gov/dads/HTML/pointAccessMethod.html

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
85

7. Read header
->

next
->

row,header
->

next
->

col,header
->

next
->

item

8. Initializing ptr
=
(header

->
next)

9. Create nodes for sparse matrix elements For(i=2 where i<=header:i++)

9.1. Allocate memory for(ptr next)

9.2. Initialize ptr=(ptr->next)

9.3. End for loop

10. Assign(ptr->next)->NULL

11. Displaying the matrix elements

11.1. Ptr=(headernext)

11.2. For(i=0;i<(headerrows;i++)

11.2.1.1. For(j=0;j<(headercols);j++

11.2.1.1.1.1. If ptr!=NULL then

11.2.1.1.1.1.1.1.1. Ifi=(ptrrows) and j=(ptrcol)then

11.2.1.1.1.1.1.1.2. Ptr=(ptrnext)

11.2.1.1.1.1.1.1.3. Otherwise print (―0\‖)

11.2.1.2otherwise print(―0\‖);

11.2.1.3end if

11.2.2 end for

11.3 end for

12.end

Sample Input:

Sparse Matrix using Linked List

Enter the number of rows of the matrix:3

Enter the number of columns of the matrix:3

Enter the elements:

1

8

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
86

0

0

7

0

7

0

0

Sparse matrix using linked list:

Row Column Element

0 0 1

0 1 8

1 1 7

2 0 7

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
87

Viva questions:

1. Explain Traversing the Linked List

2. What does the following function do for a given Linked List?

3. When to use Linked List or Array List?

4. What is data structure?.

5. List out the areas in which data structures are applied extensively?

6. What are the major data structures used in the following areas : RDBMS, Network data

model and Hierarchical data model.

7. If you are using C language to implement the heterogeneous linked list, what pointer type

 will you use?

8. Minimum number of queues needed to implement the priority queue?

9. What is the data structures used to perform recursion?

10. What are the notations used in Evaluation of Arithmetic Expressions using prefix and

postfix forms?

12. Convert the expression ((A + B) * C - (D - E) ^ (F + G)) to equivalent Prefix and Postfix

notations.

13. Sorting is not possible by using which of the following methods? (Insertion, Selection,

Exchange, Deletion)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
88

13. What are the methods available in storing sequential files ?

14. List out few of the Application of tree data-structure?

15. List out few of the applications that make use of Multilinked Structures?

16. In tree construction which is the suitable efficient data structure? (Array, Linked list, Stack, Queue)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
89

EX. NO: 10 CREATE A BINARY TREE OF INTEGERS

Aim:

a) Write a C program to Create a Binary Tree of integers

b) Write a recursive C program, for traversing a binary tree in preorder, inorder and postorder.

c) Write a non-recursive C program, for traversing a binary tree in preorder, inorder

and postorder.

d) Program to check balance property of a tree.

Description:

 A binary tree is made of nodes, where each node contains a "left" reference, a "right"

reference, and a data element. The topmost node in the tree is called the root. Every node (excluding

a root) in a tree is connected by a directed edge from exactly one other node. This node is called a

parent. On the other hand, each node can be connected to arbitrary number of nodes, called children.

Nodes with no children are called leaves, or external nodes. Nodes which are not leaves are called

internal nodes. Nodes with the same parent are called siblings.

Algorithm:

Structure definition for node in a binary

tree typedefstructbst

{

int data;

struct bst *left,*right;

}node;

Algorithm for main function

Step 1. Print ― program for binary tree‖

Step 2. Assign root=NULL

Step 3. Check while if true

3.1 display menu 1. Create 2.display 3. exit

3.2 ask for choice

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
90

3.3 if case 1:root=NULL;

do

{

New=get_node();

printf("\n Enter The Element: ");

scanf("%d",&New->data);

if(root==NULL)

root=New;

else

insert(root,New);

printf("\n Do You want To Enter More elements?(y/n):");

ans=getche();

}while(ans=='y'||ans=='Y');

clrscr();

break;

3.4 ifcase 2:display(root);

break;

3.5 if case 3:exit(0)

Algorithm for getnode()

Step 1. Allocate memory for temp node *temp;

Step 2.temp=(node *)malloc(sizeof(node));

Step 3 temp->left=NULL;

Step 4.temp->right=NULL;

Step 5. return temp;

Algorithm for insert function

Step 1.Print ‗Where to insert left/right of root->data‘

Step 2.get choice ch

Step3. if ((ch=='r')||(ch=='R')) then

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
91

3.1. if(root->right==NULL)

3.2. Root->right=New;

3.3 else insert(root->right,New);

Step 4. else if (root->left==NULL)

4.1. root->left=New;

Step5. else insert(root->left,New);

Algorithm for display()

Step1. If root=NULL then print ‗Tree is not created‘ and return

Step2. Print the following menu

Print ‗Which method you want to use‘

Print ‗1. Recursive Traversal 2.Non-Recursive Traversal

Step3. Read choice

Step4. If ch=1 then

4.1 print ‗You have chosen recursive traversal….‘

4.2 call INORDER_TRAVERSAL(root)

4.3 call PREORDER_TRAVERSAL(root)

4.4 call POSTORDER_TRAVERSAL(root)

4.5 call h=height_tree(root);

Step5. else case 2:

5.1 print ‗You have chosen non-recursive traversal….‘

5.2 call nonrec_preorder(root)

5.3 call nonrec_preorder(root)

5.4 call nonrec_preorder(root)

5.5 call h=height_tree(root);

Step6. Print ‗The Height of Tree is ‗, h

Step7. Stop

 INORDER_TRAVERSAL (NODE)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
92

/* NODE refers to the Root node of the binary tree in its first call to the . Root node is the

starting point of the traversal */

If NODE NIL then

{

call INORDER_TRAVERSAL (LCHILD(NODE));

print (DATA (NODE)) ;

call INORDER_TRAVERSAL (RCHILD(NODE));

}

end INORDER_TRAVERSAL.

 POSTORDER_TRAVERSAL (NODE)

/* NODE refers to the Root node of the binary tree in its first call to the . Root node is the

starting point of the traversal */

If NODE NIL then

{

call POSTORDER_TRAVERSAL (LCHILD(NODE));

call POSTORDER_TRAVERSAL (RCHILD(NODE));

print (DATA (NODE)) ;

}

end POSTORDER_TRAVERSAL.

 PREORDER_TRAVERSAL (NODE)

/* NODE refers to the Root node of the binary tree in its first call to the . Root node is the

starting point of the traversal */

If NODE NIL then

{

 print (DATA (NODE)) ; /* Process node (P) */

call PREORDER_TRAVERSAL (LCHILD(NODE));

call PREORDER_TRAVERSAL (RCHILD(NODE));

}

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
93

end PREORDER_TRAVERSAL.

Algorithm for nonrec_preorder ():

Step 1: Initially push NULL into the STACK, and initialize PTR.

Set TOP=1 STACK[1]=NULL and PTR=ROOT

Step 2: repeate step 3 to 5 untill PTR != NULL

Step 3: Apply PROCESS to PTR->INFO

Step 4: check for right child

If PTR->RIGHT !=NULL then push on stack

Set TOP=TOP+1 and

STACK[TOP]=PTR->RIGHT

Step 5:Check for left child

If PTR->LEFT != NULL then PTR=PTR->left

Else set ptr=STASCK[TOP] and TOP=TOP-1

Step 6: stop.

Algorithm for nonrec_postorder:

Step 1: Initially push NULL into the STACK, and initialize PTR.

Set TOP=1 STACK[1]=NULL and PTR=ROOT

Step 2: push left most path into the STACK

repeate step 3 to 5 untill PTR != NULL

step 3: pushes PTR on STACK

TOP=TOP+1 stack[top]=PTR

Step 4: if PTR-> RIGHT != NULL, then push on the STACK

Set TOP=TOP+1 STACK [TOP]=PTR->RIGHT

Step 5: PTR=PTR->LEFT

Step 6: PTR=STACk[TOP] TOP=TOP-1

Step7: repeat while ptr>0

(a)apply PROCESS to PTR->info (b)set

PTR=STACK[TOP TOP=TOP-1

Step 8: if PTR<=0,then

(a)set PTR=-PTR

(b)go to step 2

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
94

Step 9: end

Algorithm for nonrec_inorder:

Step 1: Initially push NULL into the STACK, and initialize PTR.

Set TOP=1 STACK[1]=NULL and PTR=ROOT

Step 2: repeate while PTR!=NULL [pushes left most path in STACK]

(a) Set TOP=TOP+1 and STACK[TOP]= PTR [save nodes]

(b) Set PTR=PTR->LEFT [updates PTR]

Step 3: set PTR=STACK[TOP] and TOP=TOP-1 [pops node from stack

Step 4: repeate steps 5 to 7 while PTR != NULL [backtracking]

Step 5: apply PROCESS to INFO->PTR

Step 6: check for right child

If PTR->RIGHT != NULL, then

(a) Set PTR=PTR->RIGHT

(b) Go to step 3

Step 7: set PTR=STACK[TOP] and TOP=TOP-1 [pops node]

Step 8: end

/*Algorithm to determine height of the binary tree- Height (NODE)*/

 Tree_Height(NODE)

if NODE = NULL, then return 0

else

{

LeftHeight = Tree_Height (NODE ->LEFT)

RightHeight = Tree_Height (NODE ->RIGHT)

 if(LeftHeight > RightHeight)

return LeftHeight + 1

else

return RightHeight + 1

}

end Tree_Height.

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
95

SampleOutput:

1. Insert

2. Inorder

3. Preorder

4. Postorder

5. Exit;

 Enter your choice : 1

 Enter the item 12

1. Insert

2. In order

3. Preorder

4. Postorder

5. Exit;

 Enter your choice : 1

 Enter the item 23

Where to insert left/right of root: l

1. Insert

2. Inorder

3. Preorder

4. Postorder

5. Exit;

 Enter your choice : 1

 Enter the item: 56

Where to insert left/right of root: r

1. Insert

2. Inorder

3. Preorder

4. Postorder

5. Exit;

 Enter your choice : 2

Inorder:23 12 56

1. Insert

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
96

2. Inorder

3. Preorder

4. Postorder

5. Exit;

 Enter your choice : 3

 Preorder: 12 23 56

1. Insert

2. Inorder

3. Preorder

4. Postorder

5. Exit;

 Enter your choice : 4

 Postorder: 23 56 12

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
97

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
98

Viva questions:

1. Explain pre-order and in-order tree traversal.

2. Explain implementation of traversal of a binary tree.

3. Explain implementation of deletion from a binary tree.

4. Describe Tree database. Explain its common uses.

6. What is binary tree? Explain its uses.

7. How do you find the depth of a binary tree?

8. What is Root Node

8. What is Leaf Node

9. What is Complete Tree

10. What is Height of a tree

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
99

EX. NO: 11 BINARY SEARCH TREE

Aim:

a) Write a C program to Create a BST

b) Write a C programme to insert a note into a BST.

c) Write a C programme to delete a note from a BST.

Description:

Binary Search Tree, is a node-based binary tree data structure which has the following

properties:

 The left subtree of a node contains only nodes with keys less than the node’s key.

 The right subtree of a node contains only nodes with keys greater than the node’s key.

 The left and right subtree each must also be a binary search tree.

There must be no duplicate nodes.

ALGORITHM:

1: start

2: declare node *new,*root.

3: ans=N‘.

4: root=NULL.

5: do

5.1: read choice.

5.2: switch(choice)

Case:1

1.1root=NULL

1.2do

1.2.1: new=getnode();

1.2.2:read new=data.

1.2.3:if root=NULL then do

Root=new.

1.2.4:Else do

Insert(root,new).

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
100

1.2.5:read ans.

1.2.6:while ans=‘y‘ OR ‗Y‘

End do while

case 2:

1: if root=NULL do

Print ―tree not created ―.

2:else do

2.1:new=getnode().

2.2:read new=data.

2.3:insert(root,new).

case 3:read i.

Delete(root,i)

case 4: if root=NULL then do

Print ―tree not created‖.

2.declare node *temp.

3.allocate memory to temp

temp=(node *)malloc(sizeof(node));

4.(temp->LCHILD)=NULL

5.(temp->RCHILD)=NULL

6.return temp.

7.end

ALGORITHM insert(T,ITEM):

/*T refers to the root node of the bst in its first call and item is the element to be inserted */

1.start

2.if T=NULL then do

2.1.T<-getnode()

2.2.T->LCHILD=NULL.

2.3.T->RCHILD=NULL

2.4.T->data=item

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
101

3.else if ITEM<(T->data) then do

3.1 call insert(T->LCHILD,ITEM)

4.else if ITEM>(T->data) then do

4.1 call insert(T->RCHILD,ITEM)

5.else do

5.1 print ―duplicate element‖

5.2 return

6.end insert

ALGORITHM delete(T,K).

//T refers to the root node of the bst and K is the item to be deleted

1.start

2.declare node *p,*s,*ps,*c,*pp

3.p<-T

4.while p!=NULL AND (p->data) !=K do

4.1 pp=p

4.2 if K<(p->data) then do

4.3 p=(p->LCHILD)

4.4 else do

p=p->RCHILD) 5.end

while

6.if !p then do

6.1 print ―no element with key K‖

6.2 return

7. if (p->LCHILD AND p->RCHILD)!=NULL then do

7.1 s=(p->LCHILD)

7.2ps=p

7.3 while s->RCHILD !=NULL do

7.3.1 ps=s

7.3.2 s=(s->RCHILD)

7.3.3 end while

7.4(p->data)=(s->data)

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
102

7.5 p=s

7.6 pp=ps

8. if (p->LCHILD!=NULL) then do

8.1 c = (p->LCHILD)

9.else do

9.1 c = (p->RCHILD)

10. if (p = root) then do

10.1 root = c

11. else do

11.1 if (p == pp->LCHILD) then do

11.1.1 pp->LCHILD =c

11.2 else do

11.2.1 pp->RCHILD = c

12. free(p)

13. return

14. end

ALGORITHM inorder(T)

//inorder display of tree with root node T

1.start

2. if T=NULL then do

2.1 return

3.call inorder(T->LCHILD)

4.print ―T->data‖

5. call inorder(T->RCHILD)

6.end inorder

ALGORITHM preorder(T)

//preorder display of tree with root node T

1.start

2. if T=NULL then do

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
103

2.1 return

3.print ―T->data‖

4.call preorder(T->LCHILD)

5. call preorder(T->RCHILD)

6.end preorder

ALGORITHM postorder(T)

//postorder display of tree with root node T

1.start

2. if T=NULL then do

2.1 return

3.call postorder (T->LCHILD) 4.

call postorder (T->RCHILD)

5.print ―T->data‖

6.end postorder

Sample Input:

OPERATIONS—

1-Insert an element into tee

2-delete an element into tee

3-In order traversal

4-preoreder traversal

5-post order traversal

6-exit

Enter your choice:1

Enter data of node to be ionserted:40

Enter your choice:1

Enter data of node to be ionserted:20

Enter your choice:1

Enter data of node to be ionserted:10

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
104

Enter your choice:1

Enter data of node to be ionserted:30

Enter your choice:1

Enter data of node to be ionserted:60

Enter your choice:1

Enter data of node to be ionserted:80

Enter your choice:1

Enter data of node to be ionserted:90

Enter your choice:3

10->20->30->40->60->80-.>90

Observed Output:

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
105

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
106

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
107

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
108

Viva questions:

1. balanced tree definition

2. Show the linked list representation of a binary tree

3. Array implementation of Binary Trees

4. What are the rules of ordered binary tree?

5. Describe the following term in a tree.

6. Describe binary tree and its property.

7. Describe full binary tree and complete binary tree.

8.Explain Extended Binary tree.

9. What are different dynamic memory allocation technique in C .

10. What are the difference between malloc() and calloc()?

11. How will you free the memory that is allocated at run time?

12. You want to insert a new item in a binary search tree. How would you do it?

13. What are threaded binary trees?

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
109

EX. NO: 12(A) COMPUTE THE SHORTEST PATH OF A GRAPH USING DIJKSTRA’S

ALGORITHM

Aim:

Write a C programme to compute the shortest path of a graph using Dijkstra‘s algorithm

Descritpion

Dijkstra’s algorithm is a graph search algorithm that solves the single-source shortest path

problem for a graph with non-negative edge path costs, producing a shortest path tree. This

algorithm is often used in routing and as a subroutine in other graph algorithm.

Algorithm:

 DIJKSTRA_SSSP(N, COST)

/*N is the number of vertices labeled { 1, 2, 3,…N} of the weighted digraph. COST[1:N,1:N] is the

cost matrix of the graph. If there is no edge then COST [i,j] = */

/* The computes the cost of the shortest path from vertex 1 the source, to every other

vertex of the weighted digraph */

T = {1}; /* Initialize T to source vertex */

for i = 2 to N do

DISTANCE[i] = COST[1,i]; /*Initialize DISTANCE vector to the cost of the edges

 connecting vertex i with the source vertex 1. If there is no

edge then COST [1, i] = */

end

for i = 1 to N –1 do

Choose a vertex u in V – T such that DISTANCE[u] is a minimum;

Add u to T;

for each vertex w in V-T do

DISTANCE[w] = minimum(DISTANCE[w],DISTANCE[u] + COST[u,w]);

end

end

DS LAB MANUAL

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
110

end DIJKSTRA-SSSP .

Sample Input:

Enter the number f vertices: 4

Enter the adjacency matrix

0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

Enter the starting node: 1

Distance of 0 =1

Path=0<-1

Distance of 2 =1

Path=2<-1

Distance of 3 =2

Path=3<-0<-1

Observed Output:

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
111

EX. NO: 13. MINIMUM SPANNING TREE USING WARSHALL’S ALGORITHM

Aim:

Write a C programme to find the minimum spanning tree using Warshall‘s Algorithm

Description:

Warshall algorithm is a dynamic programming formulation, to solve the all-pairs

shortest path problem on directed graphs. It finds shortest path between all nodes in a graph. If

finds only the lengths not the path. The algorithm considers the intermediate vertices of a simple

path are any vertex present in that path other than the first and last vertex of that path.

Algorithm:

Algorithm: Warshall’s algorithm for finding minimum spanning tree.

 WARSHALL(N, W)

/*N is the number of vertices labeled { 1, 2, 3,…N} of the weighted digraph. W[1:N,1:N] is the

cost matrix of the graph. If there is no edge then W [i,j] = . The final D matrix will store all the

shortest paths. */

for i = 1 to N do

for j = 1 to N do

if W[i][j] = 0 then D[i][j]=

; else D[i][j]= W[i][j];

end

end

for k = 1 to N do

for i = 1 to N do

for j = 1 to N do

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
112

D[i][j] = min(D[i][j], D[i][k] + D[k][j])

end

end

end

end WARSHALL.

Sample Input:

Enter the values of adjacency matrix

0 3 6 0 0 0 0

3 0 2 4 0 0 0

6 2 0 1 4 2 0

0 4 1 0 2 0 4

0 0 4 2 0 2 1

0 0 2 2 0 2 1

0 0 0 4 1 1 0

Minimum cost with respect to Node:0

0 3 5 6 8 7 8

Minimum cost with respect to Node:1

3 0 2 3 5 4 5

Minimum cost with respect to Node:2

5 2 0 1 3 2 3

Minimum cost with respect to Node:3

6 3 0 1 2 3 3

Minimum cost with respect to Node:4

8 5 3 2 0 2 1

Minimum cost with respect to Node:5

7 4 2 3 2 0 1

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
113

Minimum cost with respect to Node:6

8 5 3 3 1 1 0

Observed Output:

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
114

Viva Questions:

1. What is a spanning Tree?

2. Does the minimum spanning tree of a graph give the shortest distance between any 2

specified nodes?

3. What is the runtime complexity of warshalls algorithm?

4. What is the type of the algorithm used in solving the 8 Queens problem?

5. In an AVL tree, at what condition the balancing is to be done?

6. What is the bucket size, when the overlapping and collision occur at same time?

7. Classify the Hashing Functions based on the various methods by which the key value is found.

8. What are the types of Collision Resolution Techniques and the methods used in each of the type?

9. In RDBMS, what is the efficient data structure used in the internal storage representation?

10. What is a spanning Tree?

11. Does the minimum spanning tree of a graph give the shortest distance between any 2 specified nodes?

12. Which is the simplest file structure? (Sequential, Indexed, Random)

13. Whether Linked List is linear or Non-linear data structure?

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
115

EX. NO: 13 CIRCULAR QUEUE USING ARRAYS

Aim:

Write a C program that implements Circular Queue and its operations using arrays.

Description:

In a standard queue data structure re-buffering problem occurs for each dequeue

operation. To solve this problem by joining the front and rear ends of a queue to make the queue

as a circular queue

Circular queue is a linear data structure. It follows FIFO principle.

 In circular queue the last node is connected back to the first node to make a

circle.

 Circular linked list fallow the First In First Out principle

 Elements are added at the rear end and the elements are deleted at front end of

the queue

 Both the front and the rear pointers points to the beginning of the array.

 It is also called as “Ring buffer”.

 Items can inserted and deleted from a queue in O(1) time.

.

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
116

Algorithm:

In circular queue, the insertion of a new element is performed at the very first location of the

queue if the last location of the queue is full, in which the first element comes just after the last

element.

Insertion and Deletion:

Rear = (rear+1)%Maxsize

Alogarithm Steps:

Step 1: create and set the variables front,rear,MAXSIZE,cq[]

Step 2: Read the circular queue opeartion type.

Step 3: If operation type is Insertion below steps are executed.

1. Assign rear=rear%MAXSIZE.

2. if front equal to (rear+1)%MAXSIZE then display queue is overflow.

3. if front equal to -1 then assign front=rear=0.

4. Otherwise assign rear=(rear+1)%MAXSIZE and read queue data .

5. Assign cq[rear] as data.(i.e. cq[rear]=data).

Step 4: If operation type is Deletion below steps are executed.

1. Check front=-1 then display queue is underflow.

2. Set temp as cq[front] (i.e. temp=ca[front]).

3. Check front equal to rear if it is true then assign front=rear=-1(Move the front to begining)

4. Assign front=(front+1)%MAXSIZE.

Sample Input:

MAIN MENU

1. INSERTION

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
117

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 10

REAR=0 FRONT=0

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 20

REAR=1 FRONT=0

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 30

REAR=2 FRONT=0

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
118

ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 40

REAR=3 FRONT=0

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 50

REAR=4 FRONT=0

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 1

ENTER THE QUEUE ELEMENT : 60

CIRCULAR QUEUE IS OVERFLOW.

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 2

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
119

DELETED ELEMENT FROM QUEUE IS : 10

REAR =4 FRONT=1

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 2

DELETED ELEMENT FROM QUEUE IS : 20

REAR =4 FRONT=2

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 2

DELETED ELEMENT FROM QUEUE IS : 30

REAR =4 FRONT=3

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
120

ENTER YOUR CHOICE : 2

DELETED ELEMENT FROM QUEUE IS : 40

REAR =4 FRONT=4

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 2

DELETED ELEMENT FROM QUEUE IS : 50

REAR =-1 FRONT=-1

MAIN MENU

1. INSERTION

2.DELETION

3.EXIT

ENTER YOUR CHOICE : 2

CIRCULAR QUEUE IS UNDERFLOW

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
121

Obserevd Output:

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
122

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
123

Viva questions:

1. Describe stack operation.

2. Describe queue operation.

3.Discuss how to implement queue using stack.

4.Explain stacks and queues in detail.

5.What are priority queues?

6. What is a circular singly linked list?

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
124

EX. NO: 14 CREATION & OPERATIONS ON DLL

Aim:

Write a C Program to perform various operations such as creation, insertion, deletion, search and

display on doubly link lists (DLL).

Descritpion:

Doubly Linked List is a variation of Linked list in which navigation is possible in both

ways, either forward and backward easily as compared to Single Linked List. Following are

the important terms to understand the concept of doubly linked list.

 Link − Each link of a linked list can store a data called an element.

 Next − Each link of a linked list contains a link to the next link called Next.

 Prev − Each link of a linked list contains a link to the previous link called Prev.

 LinkedList − A Linked List contains the connection link to the first link called First and

to the last link called Last.

Algorithm for DLL:

1. Start

2. Read ch

3. Repeat while

(1) Do

Display all the cases

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
125

4. Read

switch(ch)

Do

Case1:append (head);

Case2:forward_display(head);

Case3:insert_after(head);

Case4:insert_before(head);

Case5: delnode(&head);

Case6:search(node);

Case7:destroy(head);

Case8:exit;

Default;

5. Endswitch

6. End while

7. Stop.

Algorithm createnode()

Input: null

Output: a node is created by using malloc function and the node is returned.

1. Start

2. Create a node ―new‖ using malloc

//new=(struct node*)malloc (sizeof(struct node));

3. Read the data into node ‗X‘.

4. Assign new(llink)=null;

New(rlink)=null;

5. Stop.

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
126

Algorithm append(node)

Input: the first created node

Output: the node created will be added to the existing dist and will be returned.

1. Start

2. Assign new=createnode();

3. If(*h=null)

{

*h=new;

Return;

}

4. Temp=*h;

5. Repeat

while(temp(rlink)!=null)

Temp=temp(rlink);

Temp=(rlink)=new;

New(llink)=temp;

6. End while

7. Stop.

Algorithm forward (node)

Input: a node is inserted

Output: prints the contents of linked list in forward order.

1. Start

2. Repeat

while(p!=null) Do

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
127

Display p(data),

and P=p(rlink)

3. End while

4. Display the contents of the list.

5. Stop

Algorithm insert_after(node,*h)

Input: an node is inserted in the list in forward order

1. Start

2. Repeat while(p@= null) Do

Display p(data),

and P=p(rlink)

3. End while

4. Display the contents of the list

5. Stop.

Algorithm insert_after (node, *h)

Input: an node is inserted in the list and h is a pointer declared.

Output: a new node is inserted after a given node of linked list

1. Start

2. Declare ‗k‘ of integer type

3. If (*h=null) Return

4. Read k

5. Temp =*h; Return;

End

6. Temp=*h;

7. Repeat while (temp!=null and temp(data)!=k) Do

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
128

Temp=temp(rlink) End

8. If(temp!=null) Do

New=create node();

New(rlink)=temp;

New(llink)=temp(llink);

New(llink)=rlink(new);

Temp->llink=new;

9. End if

10. End

11. Stop

Algorithm delete (node)

Input: a node which is to be deleted is given as input and h is declared as pointer variable.

Output: a node is deleted from the list

1. Start

2. Declare ‗k‘ of integer type

3. If(*h=null) return

4. Read K

5. If ((*h)data=k) Do

Temp=*h;

*h=(*h)rlink;

(*h)->llink=null;

6. free(temp)

7. return

8. temp= *h;

9.repeat while (temp!=null and temp(data)=k)

Do

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
129

Temp=temp(rlink)

End

If (temp!=null)

Do

Temp(rlink)(llink)=temp(llink);

Temp(llink)(rlink)=temp(rlink);

10. display the node and and the data

11. free the memory of the node

12. end while

13. stop

Algorithm search(node)

Input: a node is inserted and a pointer variable h is declared

Output: display the searched node with particular data

1. Start

2. Declare ‗K‘ of integer type

3. If (h=null)return

4. Read k

5. Temp=h

6. Repeat while (temp!=null and temp(data)!=k)do

7. Temp=temp->rlink

If(temp=null)

8. Display node does not

Node exist

9. Stop

Algorithm deleting entire list (node)

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
130

Input: node

Output: deletes entire list and displays the list

1. Start

2. If(*h=null)return

3. Repeat while

(*h!=nul)do

P=(*h)rlink;

Free(*h);

4. *h=p;

5. Display linked list is destroyed

6. stop

Sample Input:

 1.Add at beginning

 2.Add at location

 3. Add at end

 4.Deletion

 5.Display

 6. exit

 Enter your choice : 1

 Enter the value : 33

6. Add at beginning

7. Add at location

8. Add at end

9. Deletion

10. Exit

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
131

 Enter your choice : 1

 Enter the value : 38

 Add at beginning

6. Add at location

7. Add at end

8. Deletion

9. Display

10. Exit

 Enter your choice : 1

 Enter the value : 40

7. Add at beginning

8. Add at location

9. Add at end

10. Deletion

11. Display

12. Exit

 Enter your choice : 5

The elements in single linked list: 33 38 40

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
132

Observed Output;

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
133

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
134

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
135

 LENDI INSTITUTE OF ENGINEERING AND TECHNOLOGY

(Approved by A.I.C.T.E & Affiliated to JNTUK, Kakinada)

Jonnada (Village), Denkada (Mandal), Vizianagaram Dist – 535 005

Phone No. 08922-241111, 241112

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LENDI INSTITUTE OF ENGINEERING & TECHNOLOGY – DEPARTMENT OF CSE
136

Viva questions:

1.Describe the steps to insert data into a singly linked list.

2. Explain how to reverse singly link list.

3.Define circular linked list.

4.Define circular linked list.

5. Describe linked list.

6. Linked lists demystified

7.How to represent a linked list node?

8. How do you traverse a linked list?

9. How to insert a node at the beginning of the list?

10.How to insert a node at the end of the list?

11.How to insert a node in a random location in a list?

12.How to delete a node at a specific location?

	page10
	page11
	page13
	page14
	page16
	page18
	page22
	page24
	page25
	page26
	page30
	page38
	page45
	page48
	page49
	page77
	page104
	page130
	page147
	page159
	page170
	page197
	page208

