Report

Details of College

Name of the College	Lendi Institute of Engineering & Technology
College Code and District	KD,Vizianagaram
Name of the Principal	Dr.V.V.Rama Reddy
Contact No's	

Details of the Department

Name of the Department	ELECTRONICS AND COMMUNICATION ENGINEERING
Name of Head of the Department	Dr.M.Rajan Babu
Contact No's	9885239177

Details of the Faculty Member

Name of the Faculty Member	B.HEMANTHNAG
Qualification and Specialization	M.Tech, DIGITAL ELECTRONICS AND COMMUNICATION SYSTEMS
Contact No's	8500906200

Details of the Faculty Member

Name of the Faculty Member	S RAMA KRISHNA
Qualification and Specialization	M.Tech, VLSI SD
Contact No's	8499874636

Details of the Laboratory

Year and Semester of Lab	III YEAR II SEM
Name of the Laboratory	MICROPROCESSOR & MICROCONTROLLERS Lab
No of Experiments as per syllabus	32
No of Experiments conducted	32

Hands-on Experience for Faculty in Laboratories

Phase I

Preamble

The "Hands-on Experience for Faculty in Laboratories" is a faculty development programme conceptualized and designed by the Directorate of Faculty Development, JNTU K under the scholarly guidance of The Hon'ble Vice-Chancellor Prof G Tulasi Ram Das, to address the quality concerns in technical education through empowerment and capacity building of the faculty. The programme provides in house opportunity for faculty to gain hands-on experience by practically doing experiments in the laboratories of the parent departments. The programme is being implemented in all the affiliated colleges of JNTU K to help the faculty to review and broaden their understanding of the practical aspects of the theoretical knowledge imparted by them to the students.

Objectives and Benefits

- 1. To mobilize and motivate the faculty to get familiarity with all the experiments of the apparatus, machinery, equipment, set up and facilities available in each laboratory of the parent departments
- 2. To broaden the understanding of the link between the theory and practice by making the faculty to do experiments
- 3. To help build the capacity of the faculty such that they can handle the laboratories of not only their specialization but also other specializations in the same department.
- 4. To serve indirect purpose of checking the working condition and maintenance of the apparatus, machinery, equipment, set up and facilities in the laboratories.
- 5. Weightage will be given in the ratifications to the faculty participating in this programme
- 6. Benefit to the student in instructions of relevance, importance and appreciation of experiments delivered by teachers.

The Organization

- 1. The Directorate of Faculty Development, JNTU K will organize, supervise and coordinate the programme " Hands-on Experience for Faculty in Laboratories" Phase I
- 2. All the I Semester Laboratories of 21 Departments are covered in the programme in Phase I as per details given in **Annexure 1**. The II Semester Laboratories will be covered in Phase II.
- 3. The programme is conducted in the departmental laboratories in all the affiliated colleges
- 4. The reporting mechanism, communication and the ownership will be as noted below

The implementation

- It is mandatory for all the faculty teachingUG courses in all affiliated colleges of JNTUK to participate in the programme(The Principal and HOD's are exempted as they have to monitor the programme)
- 2. The laboratories of 21 departments given in **Annexure 1**, are included in the programme.
- 3. The faculty will conduct all the possible experiments according to R13 and R10 syllabi, on the apparatus, machinery, equipment, set up and facilities available in each laboratory of their departments.
- 4. The Heads of the Departments (HOD's) need to create awareness about the importance of the programme among the faculty members of their departments and encourage them to participate in the programme
- 5. The HOD's take lead to create necessary environment and make required arrangements in the department to implement the programme.
- 6. The Principal shall send the list of faculty who have not participated in the programme, along with the explanations for non-compliance

The Duration of Programme and Report Submission

- 1. The "Hands-on Experience" programme shall be conducted and completed in all aspects from 1.5.2014 to 30.6.2014.
- <u>Conduct of Experiments</u> :The faculty will conduct the experiments using observation note books. They shall record their observations, draw the graphs, and write all the relevant details in the observation note books. These shall be maintained for each lab separately and kept in the departments for inspection and verification by authorities of the University.
- Submission of Report :The faculty will prepare report for each labon hard copy for submission to the University. The report shall be prepared as per the format enclosed on A4 size sheet. The report for a lab with 10 experiments will have 11 papers(Cover page + 10 papers for ten experiments)
- **4.** The HOD's will collect the reports from faculty and submit them to The Principal. The Principal will in turn submit the reports to The Director (Faculty Development), JNTUK, Kakinada on or before 7.7.2014

The Queries

- The queries can be sent to <u>abbaiah@yahoo.com</u> with the subject name of <u>Hands- on</u> <u>Experience-Query</u> for any clarifications
- 2. The queries will also be answered on calling **0884 2355677**

Name of Experiment	ASSEMBLY LANGUAGE PROGRAM TO PERFORM MULTI BYTE ADDITION		
Importance of Experiment	To perform the addition of two multi byte numbers using 8086		
Apparatus Required	1.ESA 86/88E V3 TRAINER BOARD. 2.Key board 3.Power supply		
Inference /Outcome	 ADC- the instruction ADC is used to add two 8-bit or 16-bit numbers along with the content of carry flag, the addition result is stored in destination register and the Carry flag, overflow flag, sign flag, auxiliary carry flags gets affected. Any carry generated from addition is shown in carry flag. LOOP: The loop instruction uses count register CX as the no of iterations the loop has to run. It decrements CX register and if zero it breaks the branching. INPUT: 9988776655443322 11111111111111 OUTPUT: AA99887766554433 		
Correlation of experimental outcome with theoretical concept	OUTPUT: AA99887766554433 START LOAD THE MEMORY POINTER SI, DI AND BP WITH MEMORY LOCATIONS LOAD CONTENTS FROM SI AND DI TO AL AND BL RESPECTIVELY INITIALIZE COUNTER IN CX = NO OF BYTE IN GIVEN NUMBER ADD WITH CARRY AL AND BL CONTENTS AND STORE RESULT IN AL Increment memory pointers and decrement count V TCF=0 Move the result in to memory location V STOP ALGORITIHM: 1. Load the pointers with memory address of the two numbers and the result. 2. Clear carry flag for the first addition to be with no carry. 3. Load the count with the number of bytes in each number to		
	perform the same number of additions.4. Load AL and BL with the bytes from their address		

	5. Perfor	m addition with carry.	
	6. Store	the sum in AL to resul	t address.
	7. Incren	nent pointers so that th	ey point to next byte of the number.
	8. go to s	step 4 until the count is	s zero by decrementing the count and
	check	for zero.	
	9. Preser	ve the carry flag of las	t addition to the result location to
	compl	ete the addition.	
	program		
		MOV SI,2350	;address of first operand
		MOV DI,2750	;address of second operand
		MOV BP,3000	;address of the result
		CLC	;clear the carry flag
		MOV CL,08	;no of BYTES within the number
	UP:	MOV AL,[SI]	;word from the first operand
		MOV BL,[DI]	word from the second operand
		ADC AL,BL	addition of two bytes
		MOV [BP],AL	sum is stored at the result
		INC SI	:SI points to next word of first
	operand		
	1	INC DI	:DI points to next word of second
	operand		, r
	1	INC BP	:BP points to next word of
	result		, <u>r</u>
		LOOP UP	:decrement CL and jump to label
	UP if CL≠0		,
	, _	MOV AH.00	clear AL for carry
		JNC L1	if CF=0 jump to label L1
		INC AH	:increment Ah
	L1:	MOV [BP].AL	:store the carry
	21.	INT 03	invoking break-point interrupt
			, myoking oreak point morrupt
Practical Application	1 Commercia	al applications like sim	ple calculator toys and remote cars
ruction application	etc		pre curculator, toys, and remote curs
	2 And indust	rial wise large data pro	cessing and insurance companies
	3 Can be use	d as part of the ALU	cessing and insurance companies.
	4 Can be use	d in address generation	logic in processor design
	+. Can be use	a in address generation	riogie în processor design.
Can you design new			
experiment with this set up	Yes, can used	as part of calculator e	xperiment etc.
experiment with this set up	i es, cuir useu		
Is the experimental set up in	yes	ves	
working condition	-		
0			

Name of Experiment	ALP PROGRAM TO MULTI BYTE SUBTRACTION			
Importance of Experiment	To perform the Subtraction of two multi byte numbers using 8086			
Apparatus Required	1.ESA 86/88E V3 TRAINER BOARD.			
	2.Key board			
	3.Power supply			
Inference /Outcome	SBB- the instruction SBB is used to perform the subtraction of			
	subtrahend from minuend along with previous content of carry flag, the subtraction result is stored in destination register and the Carry flag, overflow flag, sign flag, auxiliary carry flags gets affected. Any borrow taken during the subtraction process is indicated in carry flag. LOOP : The loop instruction uses count register CX as the no of iterations the loop has to run. It decrements CX register and if zero it breaks the branching			
	INPUT: 9988776655443322			
	1111111111111			
	OUTPUT . 8877665544332211			
	001101. 0077003544352211			
Correlation of experimental	Flowchart:			
outcome with theoretical	START			
concept	Load the registers SL DL and RB with memory			
	locations act as a memory pointers			
	↓			
	Load contents from SI and DI to AL and BL respectively Initialize counter in CX= no of bytes in given number			
	Subtract with barrow AL and BL contents, store result in AL			
	Increment memory pointers and decrement count			
	ZF=0			
	↓ Move the result in to memory location			
	STOP			
	Algorithm:			
	the result.			
	2. Clear carry flag for the first subtraction to be with no borrow.			
	3. Load the count with the number of bytes in each number to			
	perform the same number of byte subtractions.			
	4. Load AL and BL with the bytes from their address 5. Perform subtraction with horrow			
	 Ferform subtraction with borrow. Store the difference in AL to result address. Increment pointers so that they point to next byte of the number. 			
	8. go to step 4 until the count is zero by decrementing the count and			

	check	for zero.	
	9. Preser	ve the carry flag of la	st subtraction to the result location to
	compl	lete the multi-byte sub	ptraction.
	Program:		
		MOV SI,2350	;address of first operand
		MOV DI,2750	;address of second operand
		MOV BP,3000	;address of the result
		CLC	;clear the carry flag
		MOV CL,08	;no of BYTES within the number
	UP:	MOV AL,[SI]	;word from the first operand
		MOV BL,[DI]	;word from the second operand
		SBB AL,BL	; subtraction of two bytes
		MOV [BP],AL	;sum is stored at the result
		INC SI	;SI points to next word of first
	operand		
	1	INC DI	;DI points to next word of second
	operand		
	1	INC BP	;BP points to next word of
	result		
		LOOP UP	decrement CL and jump to label
	UP if CL≠0		, J 1
		MOV AH,00	clear AL for barrow
		JNC L1	if CF=0 jump to label L1
		INC AH	:increment AL
	L1:	MOV [BP].AL	store the barrow
		INT 03	:invoking break-point interrupt
Practical Application	1. Commercia	al applications like sin	nple calculator, toys, and remote cars
II III	etc.	TI TI	r
	2. And indust	rial wise large data pr	ocessing and insurance companies.
		0 1	
Can you design new			
experiment with this set up	Yes, to be par	rt of a ALU.	
-			
Is the experimental set up in			
working condition	yes		

ALP PROGRAM TO 16 BIT MULTIPLICATION Name of Experiment **Importance of Experiment** To perform the Subtraction of two multi byte numbers using 8086 **Apparatus Required** 1.ESA 86/88E V3 TRAINER BOARD. 2.Key board 3. Power supply **Inference** /Outcome MUL: the instruction has implied register AL or AX as one of the operand for 8-bit or 16-bit multiplication. Any other general purpose register can be used as other number. The multiplication result is stored in AX or AX-DX for 8-bit or 16-bit multiplication. 1234H X 1234H INPUT: OUTPUT: 3000 - 5A90H 3002 - 014BH **Correlation of experimental Flowchart:** outcome with theoretical START concept Load AX and BX with given Immediate data Multiply AX and BX store result in AX and DX Move the AX and DX contents in to memory locations STOP Algorithm: 1. Load AX and BX with numbers to be multiplied. 2. Multiply AX and BX using MUL instruction to get results in AX and DX 3. Move the content of AX and DX to the memory locations. **Program:** MOV AX,1234H ;load the ax register with first operand ;load the bx register with second operand MOV BX,1234H ;perform multiplication of ax with bx MUL BX MOV [3000],AX store the lower word of the result from ax into 3000 offset MOV [3002],DX ; store the higher word of the result from dx into 3002 offset. ; invoke the break point interrupt **INT 03 Practical Application** 1. Commercial applications like simple calculator, toys, and remote cars etc. 2. And industrial wise large data processing and insurance companies. 3. an important part of multiply and accumulate used in digital signal processors. Can you design new experiment with this set up Yes, can be used to be part of ALU, multiply and accumulate unit in DSP processors. Is the experimental set up in yes working condition

Name of Experiment	ALP PROGR	AM TO DIVISION	OF 32 BIT BY 16 BIT NUMBER
Importance of Experiment	To perform the microprocess	ne division of 32 bit b or	by 16 bit number using 8086
Apparatus Required	1.ESA 86/88	E V3 TRAINER BO	ARD.
	2.Key board		
	3.Power supp	oly	
Inference /Outcome	DIV: the inst	ruction DIV always t	takes AX or AX-DX for 16/8 or 32/16
	division. The	result of quotient is a	stored in AL or AX and reminder in
	AH or DX fo	r 16/8 and 32/16 divi	sion respectively.
	INPUT:	3000 - 0008	
		3002 - 0000	
		4000 - 0002	
	OUTPUT:	5000 - 0004	
		5002 - 0000	
Correlation of experimental	Flowchart:		
outcome with theoretical		(s	TART
concept			
			\mathbf{V}
	т	1437 1037	
	Loa	d AX and BX wi	th given Immediate data
	Perform d	ivision between A.	X and BX store result in AX and
			DX
			↓
	Move	the AX and DX col	ntents in to memory locations
			STOP
	Algoirthm :	.1 1. 477 17	
	I. Load	the register AX and I	DX with 32bit dividend, load the 16bit
	alviso 2 Derfe	or into BA.	ision using DIV instruction
	2. Perior	the regult of quotient	is AV and reminder in DV to memory
	Program .	the result of quotient	In AA and reminder in DA to memory.
	1 Togram.	MOV SI,3000	:loading the si register with 3000 offset
		address	
		MOV DI,4000	; loading the di register with 4000 offset
		address	· loading the by register with divisor
		MOV AX,[SI]	; loading the ax with the lower word of
		dividend	-
		ADD SI,02	; incrementing si by 2 to point to higher
		WORD OF GIVIDEND	· loading the dy register with higher word
		of dividend	, routing the ax register with higher word
		DIV BX	; perform the double word by word
		division	
		MOV SI,5000 MOV ISU AX	; load si with the offset address 5000
		address	, road the remainder of drvision into 5000
		ADD SI,02	; increment si to point to next word at 5002
		address	

	MOV [SI],DX ; store the quotient of division into 5002 address pointed by si INT 03
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars
	etc.
	2. And industrial wise large data processing and insurance companies.
	3.an integral part of ALU.
Can you design new	
experiment with this set up	Yes, can be used as part of ALU.
Is the experimental set up in	
working condition	yes

Name of Experiment	MULTIPLICATION OF TWO 8-BIT SIGNED NUMBERS			
Importance of	To perform the multiplication of two 8- bit signed numbers using 8086			
Experiment	microprocessor			
Experiment				
Apparatus	1. ESA 86/88E V3 TRAINER BOARD.			
Required	2 Key board			
Requirea	2 Dower supply			
	S.rower suppry			
Informa /Outcome	INULL • This instruction is going to perform the signed multiplication of two given			
Interence / Outcome	signed workers. The symbols going to perform the signed multipleation of two given			
	signed numbers. The numbers are in signed 2's complement form. The instruction			
	takes AL as the default register; the result is stored in AX register.			
	INPUT: 3000 – 08H			
	3001 - 02H			
	OUTPUT: 4000 – 10H			
Correlation of	Flowchart:			
experimental				
outcome with	(START)			
theoretical concent				
theoretical concept				
	Load AL and BL with Memory pointed by SL and DL			
	Louartie and De with Memory pointed by Stand Di			
	Perform signed multiplication between AL and BL store			
	I errorin signed multiplication between <i>TL</i> and <i>DL</i> store			
	result in AX			
	V V			
	Move the AX contents in to memory locations			
	STOP			
	STOP			
	ALGORITHM:			
	ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied			
	ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction			
	 ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction. 3. Store the result from to memory location. 			
	 ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction. 3. Store the result from to memory location. 			
	 ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction. 3. Store the result from to memory location. PROGRAMS:			
	ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction. 3. Store the result from to memory location. PROGRAMS: MOV SI,3000 ; the pointer si is loaded with offset address 3000			
	 ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction. 3. Store the result from to memory location. PROGRAMS: MOV SI,3000 ; the pointer si is loaded with offset address 3000 			
	 ALGORITHM: Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. Performing the signed multiplication using the IMUL instruction. Store the result from to memory location. PROGRAMS: MOV SI,3000 the pointer si is loaded with offset address 3000 MOV DI,3001 the pointer di loaded with offset address 3001 			
	 ALGORITHM: Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. Performing the signed multiplication using the IMUL instruction. Store the result from to memory location. PROGRAMS: MOV SI,3000 the pointer si is loaded with offset address 3000 MOV DI,3001 the pointer di loaded with offset address 3001 gload al with the first operand from si pointer address 			
	 ALGORITHM: Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. Performing the signed multiplication using the IMUL instruction. Store the result from to memory location. PROGRAMS: MOV SI,3000 the pointer si is loaded with offset address 3000 MOV DI,3001 the pointer di loaded with offset address 3001 MOV AL,[SI] load al with the first operand from si pointer address MOV BL,[DI] the pointer is the second operand from di pointer address 			
	ALGORITHM: 1. Load the default register of the instruction that is AL and other register with the signed 8-bit numbers to be multiplied. 2. Performing the signed multiplication using the IMUL instruction. 3. Store the result from to memory location. PROGRAMS: MOV SI,3000 ; the pointer si is loaded with offset address 3000 MOV DI,3001 ; the pointer di loaded with offset address 3001 MOV AL,[SI] ; load al with the first operand from si pointer address MOV BL,[DI] ; load bl with the second operand from di pointer address IMUL BL ; perform signed multiplication of al with bl			

	MOV [SI],AX	; the signed multiplication result in ax is stored in 4000
	offset	
	INT 03	; invoke the break point interrupt
Practical	1. Commercial applications like	simple calculator, toys, and remote cars etc.
Application	2. And industrial wise large data	a processing and insurance companies.
	3. can be a part of ALU.	
	Ĩ	
Can you design new	Yes, to be part of ALU.	
experiment with		
this set up		
Is the experimental		
set up in working	yes	
condition		

Page 6

Name of Experiment	DIVISION OF 16 BIT BY 8 BIT SIGNED NUMBER
Importance of Experiment	To perform the division of 16 bit by 8 bit signed numbers using 8086
	microprocessor
Apparatus Required	1. ESA 86/88E V3 TRAINER BOARD.
	2. Key board
	3.Power supply
Inference /Outcome	IDIV: instruction has default register AX as dividend and other 8-bit register as divisor. The signed result of division has quotient in AL with the resulting sign of the division operation, reminder is in AH with the same sign as that of dividend. INPUT: 3000 - 0008H 4000 - 04H
	OUTPUT: $5000 - 02H$ 5001 - 00H
Correlation of experimental	FLOWCHART:
outcome with theoretical	START
concept	
	ľ l
	Load AX and BL with Memory pointed by SI and DI
	↓
	Perform signed division between AX and BL store result in
	AX
	Move the AX contents in to memory locations
	\checkmark
	STOP
	ALGORITHM:
	1. Load the default register AX with the dividend, and the divisor in
	2 Perform the signed division with the resulting quotient and
	reminder in AL and AH
	3. Store the AX to a given memory locations.
	MOV SI,3000 ; load si with offset 3000
	MOV DI,4000 ; load di with offset 4000 MOV AX [SI] : load av with dividend from si pointer
	MOV BL,[DI] ; load ax with dividend from si pointer
	IDIV BL ; perform the signed division of word by
	MOV SI,5000 ; load the si with offset 5000
	MOV [SI],AX ; store the signed division result from ax to
	INT 03 ; invoke the break point interrupt.
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars
	etc.

	3. used as part of ALU.
Can you design new experiment with this set up	Yes, can be made part of ALU design.
Is the experimental set up in working condition	yes

Name of Experiment	ALP FOR SUM OF 'N' NATURAL NUMBERS
Importance of Experiment	To find the sum of a natural numbers using $ESA \frac{96}{99}$ kit
importance of Experiment	TO find the sum of it natural numbers using ESA-80/88 Kit
Apparatus Required	1.ESA 86/88E V3 TRAINER BOARD.
	2.Key board
	3.Power supply
Inference /Outcome	DEC: The instruction decrements the register or memory value, it effects
	the zero flag.
	JNZ: jump if not zero instruction checks for zero flag, if flag is set
	perform the jump to given location or else continue with next instruction.
	INPOT. 4000-0013H
	OUTPUT: 5000-00E7H
Correlation of experimental	FLOWCHART:
outcome with theoretical	
concept	Start
	Initialization of CX and specified with string
	locations 3000h
	Add the CX and AX registers
	Decrement the CX register
	ZF=?
	Move AX register data to the 3004 location
	Stop
	ALGORITHM:
	1. Enter the N natural numbers to be added.

	2. Empty the count value
	3. Add the natural number to the count.
	4. Decrement the natural number and if not zero goto step 3 else
	continue to step 5.
	5. Store the sum result to memory.
	PROGRAM:
	MOV CX, [3000H]
	MOV AX, 0000H
	X: ADD AX, CX
	DEC CX
	JNZ X
	MOV [3004H], AX
	INT 03H
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars
	etc.
	2. And industrial wise large data processing and insurance companies.
	3. useful in statistical mathematical operations.
Can you design new	
experiment with this set up	Yes, can be used in mean, median, average of numbers programs.
Is the experimental set up in	
working condition	yes

Page 8

Name of Experiment	AVERAGE OF 'N' NATURAL NUMBERS
Importance of Experiment	To find the average of n natural numbers using ESA-86/88 kit
Apparatus Required	1.ESA 86/88E V3 TRAINER BOARD. 2.Key board 3.Power supply
Inference /Outcome	DEC: The instruction decrements the register or memory value, it effects the zero flag. JNZ: jump if not zero instruction checks for zero flag, if flag is set perform the jump to given location or else continue with next instruction. DIV: the division of 16/8 or 32/16 dividend divisor results in quotient and reminder of 8 or 16 bit respectively. INPUT: 4000-05H OUTPUT:5000-0003H 5002-0000H To observing the average of n natural numbers of the two decimal or hex numbers of the given
Correlation of experimental outcome with theoretical concept	FLOWCHART:

Can you design new experiment with this set up	Yes
Is the experimental set up in working condition	yes

Name of Experiment	FACTORIAL OF A GIVEN NUMBER
Importance of Experiment	Program to find the factorial of given number present in the memory location [3000H] store the result in [3002H].
Apparatus Required	1.ESA 86/88E V3 TRAINER BOARD.
	2.Key board
	3.Power supply
Inference /Outcome	DEC: The instruction decrements the register or memory value, it effects
	the zero flag.
	perform the jump to given location or else continue with next instruction.
	MUL: the instruction has implied register AL or AX as one of the
	operand for 8-bit or 16-bit multiplication. Any other general purpose
	in AX or AX-DX for 8-bit or 16-bit multiplication.
	INPUT: 4000H-0003H
	ОИТРИТ: 5000Н-0006Н
	5002H-0000H
Correlation of experimental	FLOWCHART:
outcome with theoretical	
concept	Start
	↓ Initialization of CX and specified with string locations 4000h
	Initialization of CA and specified with string locations 4000h
	Multiplication to CX and AX registers
	Decrement the CX register
	ZF=?
	↓
	Division the AX to BX registers
	Move AX register data to the 3000 and 3004 location
	Stop

	 ALGORITHM: Clear the DX register and AX register as 1 for the factorial. Load the number to which the factorial is to be calculated. Multiply the number with the factorial result register AX. Decrement the number, if not zero goto step 3 or else continue with next instruction. Store the register result pair AX-DX to memory. PROGRAM: MOV DX, 0000H MOV CX, [3000H] MOV AX, 0001H L:MUL CX DEC CX JNZ L MOV [3002H], AX
	MOV [3004H], DX INT 03H
Practical Application	 Commercial applications like simple calculator, toys, and remote cars etc. And industrial wise large data processing and insurance companies. Can be used in mathematical applications like permutations, combinations and probability.
Can you design new experiment with this set up	yes
Is the experimental set up in working condition	yes

Page 10

Name of Experiment	FIBONACCI SERIES
Importance of Experiment	Write a program for Fibonacci series. Test the program in ESA-86/88 kit.
Apparatus Required	1.ESA 86/88E V3 TRAINER BOARD.2.Key board3.Power supply
Inference /Outcome	 DEC: The instruction decrements the register or memory value, it effects the zero flag. JNZ: jump if not zero instruction checks for zero flag, if flag is set perform the jump to given location or else continue with next instruction. INC: The instruction increments the register or memory value, it effects the zero flag. To observing Fibonacci series of decimal or hex numbers of the given INPUT: DS:SI: 00H,01H CX: 05H OUTPUT:00H,01H,01H,02H,03H,05H,08H
Correlation of experimental outcome with theoretical concept	FLOWCHART:

	 And industrial wise large data processing and insurance companies. Fibonacci numbers are important in the computational run-time analysis of euclid's algorithm to determine the greatest common divisor of two integers- the worst case input for this algorithm is a pair of consecutive
	Fibonacci numbers.4. Fibonacci numbers are used by some pseudorandom number generator.
Can you design new experiment with this set up	yes
Is the experimental set up in working condition	yes

Name of	ASCII Arithmetic Operations
Experiment	1
Linportinioni	
Importance of	To perform the ASCII Arithmetic Operations using 8086 microprocessor
Exportment	To perform the ASCH Anthinetic Operations using 8080 meroprocessor
Experiment	
Apparatus	1.ESA 80/88E V3 IKAINER BUARD.
Required	2.Key board
	3.Power supply
Inference /Outcome	AAA: the ASCII arithmetic adjusts after addition is used to produce the ASCII result
	for addition of ASCII numbers. The two added numbers are to be in unpacked BCD
	form. The result of the sum and AAA will be in unpacked BCD form of the sum.
	AAS: the ASCII arithmetic adjusts after subtraction is used to produce the ASCII
	result for subtraction of ASCII numbers. The two subtracted numbers are to be in
	unpacked BCD form. The result of the subtraction and AAS will be in unpacked
	BCD form of the difference
	$\mathbf{A} \mathbf{A} \mathbf{M}$ the $\mathbf{A} \mathbf{S} \mathbf{C} \mathbf{I}$ arithmetic adjusts after multiplication is used to produce the
	ASCII result for multiplication of ASCII numbers. The numbers to be multiplied are
	to be in unnealed DCD form. The result of the product and AAM will be in
	to be in unpacked BCD form. The result of the product and AAM will be in
	unpacked BCD form of the result.
	AAD: the ASCII arithmetic adjusts before division. The dividend and divisor are in
	unpacked BCD form. The dividend is adjusted to a form suitable for division. After
	division the result of quotient and reminder are in their unpacked form to be
	converted to ASCII with OR-ing with 30H.
	3001 - 3711
	5001 - 5211
	5001 2011 5001 2011
	5001-30H
	5002 – 35H
	5003 –30H
	5004 –3EH
	5005 –30H
	5006 –33H
	5007 –31H
Correlation of	FLOWCHART:
experimental	
outcome with	
theoretical concept	

	bcd result		
		ADD BP,02H	; point bp to the next word address
		MOV [BP],AX	; store the ascii subtraction result to bp pointer
	address		
		MOV AL.[SI]	: load again the first operand into al register
		AND AL OFH	· convert the ascii number into unpacked bcd
	number	111(2)112,0111	; convert the user number into unpuerted oed
	number	AND BL OFH	: convert the ascii number into unpacked hed
	number		; convert the usen number into unpuexed bed
	number	MIII DI	· perform 8 hit multiplication of al with hl
			, perform o-off multiplication of ar with of
		$\mathbf{OP} \mathbf{A} \mathbf{V} 2020$, asch aufust after multiplication
	#2011t	OKA AA,3030	, perform of operation on the adjusted unpacked
	result		
		ADD $BP,02$; point op to next word address
		MOV [BP],AA	store the result of ax into the op pointer address
		MOV AX,0302	; load ax with the unpacked bcd form of the
	dividend		
		AAD	; ascii adjust before division
		DIV BL	; perform division of ax with bl
		ORA AX,3030	; perform or operation on division result for proper
	ascii value		
		ADD BP,02H	; point bp to the next word address
		MOV [BP],AX	; store the ascii division result into bp pointed
	address		
		INT 03	; invoke breakpoint interrupt
Practical	1. Commercia	al applications like si	mple calculator, toys, and remote cars etc.
Application	2. And industrial wise large data processing and insurance companies. 3. arithemetic operation from ASCII character devices like LCD, monitor, keyboard		
	etc	· · · · · · · · · · · · · · · · · · ·	,, _,, _
	ete		
Con you dosign now			
can you uesign new	Vac coloulat	on with input from A	CIII Izezihoozed
experiment with	res, calculat	or with input from As	SCII Keyboard.
this set up			
Is the experimental	yes		
set up in working			
condition			

rage IZ

Name of Experiment	Conversion from packed BCD to unpacked BCD
Importance of Experiment	To write an ALP program to convert packed number in to unpacked
	number using 8086 microprocessor
Apparatus Required	1. ESA 86/88E V3 TRAINER BOARD.
	2.Key board
	3.Power supply
Inference /Outcome	AND: this instruction is used to perform the bit-wise and operation
	between 8-bit and 16-bit numbers.
	ROR: rotate right instruction works on AL or AX register with the bits in
	the register shift towards right, the shifted out LSB is loaded as MSB bit.
	I ne numbers of snifts are given by the count register CA.
	$\begin{array}{ccc} \Pi \mathbf{V} \mathbf{U} \mathbf{I} & \mathbf{J} \mathbf{U} \mathbf{U} \mathbf{U} \mathbf{I} \\ \mathbf{O} \mathbf{U} \mathbf{T} \mathbf{P} \mathbf{U} \mathbf{T} & \mathbf{J} 0 \mathbf{O} \mathbf{U} \mathbf{U} \mathbf{H} \end{array}$
	4000 -0411 4001 -03H
Correlation of experimental	FLOWCHART
outcome with theoretical	
concept	START
concept	
	Load AL with given Packed number, and same copy
	in to AH
	Mask the summer with his in AI, has nonformer AND enconstion
	Mask the upper hibble in AL by perform AND operation
	between AL and immediate data OF
	Mask the lower nibble in AH by perform AND operation
	between AL and immediate data F0, and rotate AH by 4
	times
	Move the AX contents in to memory locations
	STOP
	ALGURITHM:
	2. Soparate the lower nibble by ANDing the AL with OFh
	2. Separate the lower mode by AlvDing the AL with 01 in 3. Using the rotate right instruction on ΔH swap the position of lower
	and upper nibble
	4 Perform the AND operation with 0Fh on AH register
	5. Store the AX register to memory
	PROGRAMS:
	MOV AL,[3000] ;load al with the content of 3000 address
	MOV AH,AL ; load ah with the value of al
	AND AL,0FH ; perform AND operation to remove higher

	nibble of al register MOV CL,04H AND AH,F0H nibble of ah register ROR AH,CL iterations MOV [4000],AX INT 03	; initialize the counter with 4 ; perform AND operation to remove lower ; rotate right ah with the counter as no of ; store the unpacked result into 4000 address ; invoke the breakpoint interrupt	
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars		
	 2. And industrial wise large data processing and insurance companies. 3. can be used to provide data display as displays only require the BCD numbers in the unpacked form. 		
Can you design new experiment with this set up	Yes, display interface to 7-segmer	nt display.	
Is the experimental set up in working condition	yes		

Conversion from BCD to ASCII Name of Experiment **Importance of** To write an ALP program to convert 8 bit packed BCD number in to ASCII number Experiment using 8086 microprocessor **Apparatus** Required 1. ESA 86/88E V3 TRAINER BOARD. 2.Key board 3. Power supply AND: this instruction is used to perform the bit-wise and operation between 8-bit **Inference** /Outcome and 16-bit numbers. **ROR:** rotate right instruction works on AL or AX register with the bits in the register shift towards right, the shifted out LSB is loaded as MSB bit. The numbers of shifts are given by the count register CX. **OR:** this instruction is used to perform the bit-wise and operation between the 8 bit and 16 bit numbers. INPUT: 3000 - 43H OUTPUT: 4000 - 34H 4001-33H **Correlation of FLOWCHART:** experimental START outcome with theoretical concept Load AL with given Packed number, and same copy in to AH Mask the upper nibble in AL by perform AND operation between AL and immediate data 0F Mask the lower nibble in AH by perform AND operation between AL and immediate data F0, and rotate AH by 4 times \checkmark Perform OR operation between AX and immediate data 3030 Move the AX contents in to memory locations STOP **ALGORITHM:**

	1. Load the required BCD into the AL register, copy the same to AH register.				
	2. Convert the packed BCD	2. Convert the packed BCD to unpacked BCD.			
	3. Perform the ANDing ope	. Perform the ANDing operation on AL with 0Fh to obtain lower nibble.			
	4. Perform the rotate right o	peration on AH with rotations of 4 to obtain the			
	higher nibble.				
	5. The result is in unpacked	The result is in unpacked BCD form, to convert to ASCII, the lower and			
	higher nibbles are to be C	higher nibbles are to be ORed with 30h.			
	6. Store the resultant ASCII	Store the resultant ASCII value to memory.			
	PROGRAM:				
	MOV AL,[3000]	; load al with the content of 3000 address			
	MOV AH,AL	; load an with the value of al			
	register	AND AL, OFH ; perform AND operation to remove higher hiddle of al register			
	MOV CL,04H ; initialize the counter with 4				
	AND AH,F0H	AND AH,F0H ; perform AND operation to remove lower nibble of ah			
	register				
	ROR AH,CL	; rotate right ah with the counter as no of iterations			
	OR AX,3030	; perform or operation on ax to convert to ascii form			
	MOV SI,4000	; load si with the address			
	INIT 03	; store the ascil result to the si pointed address			
		, mvoke the breakpoint interrupt			
Practical	1. Commercial applications like	simple calculator, toys, and remote cars etc.			
Application	2. And industrial wise large data processing and insurance companies.				
FF	3. For output device of ASCII standard the standard decimal is to be provided by				
	using BCD to ASCII conversion				
Can you design new					
evneriment with	Yes, can be used in display of numbers in monitor with ASCII character set				
this set un	res, can be used in display of numbers in monitor with ASCH character set.				
tins set up					
Is the experimental					
set up in working	ves				
condition					

Name of	Moving a Bloc	k of 10bytes			
Experiment		·			
Importance of Experiment	To write an AL another memor	P program to move a b y location	lock of memo	ry from one r	nemory location to
Apparatus Required	1.ESA 86/88E 2.Key board 3.Power supply	V3 TRAINER BOARD).		
Inference /Outcome	To observe Mo CLD: Auto inc REP MOVSB until the CX =0 INPUT:	wing a Block of 10byte crement of the SI &DI s crement of the move string comparison 3000 - 01 3001 - 02 3002 - 03 3003 - 04 3004 - 05 3005 - 06	s of decimal tarting addres g byte location	or hex numbersing locations n to the destin OUTPUT:	ers of the given ation loctation 4000 - 01 4001 - 02 4002 - 03 4003 - 04 4004 - 05 4005 - 06
		3005 - 06 3006 - 07 3007 - 08 3008 - 09 3009 - 0A			4005 - 06 4006 - 07 4007 - 08 4008 - 09 4009 - 0A

Correlation of	FLOW CHART:				
experimental					
outcome with	START				
theoretical concept	START				
	Load the data from source location to register byte by				
	byte, initialize the counter				
	Store the data from register to destination location byte by				
	byte				
	Repeat the same process until count value is equal to zero				
	STOP				
	STOP				
	ALCODITUM.				
	ALGORITHM:				
	the ES.				
	2 Load the CX register with the no of string bytes to be moved				
	3. Clear direction flag to have auto increment of the addresses for every				
	successive byte transfer.				
	4. Repeat the moving string byte data from source to destination until the count				
	is zero.				
	PROGRAM:				
	MOV SI,4000 ; load the si with the offset address of the				
	Source string MOV DI 5000				
	MOV DI,5000 ; load the di with the offset address of the				
	MOV CX 000a				
	of elements of the string				
	CLD : clear direction flag to auto increment the				
	string pointer address				
	REP : repeat prefix to continue the operation till				
	counter is null				
	MOVSB ; perform move cx string bytes				
	INT 03 ; invoke the break point interrupt				
Practical	1. Commercial applications like simple calculator, toys, and remote cars etc.				
Application	2. And industrial wise large data processing and insurance companies.				
	3. used to transfer large data in data structures etc				
Can you design new					
experiment with	Yes				
this set up					
is the experimental					
set up in working	yes				
conunion					

LENGTH OF THE STRING Name of Experiment To write an ALP program to length of the given string byte using MASM **Importance of Experiment** software **Apparatus Required 1.Personal Computer** 2.MASM/TASM Software Installed **Inference** /Outcome CMP: the compare instruction works same as subtraction except that the result is only going to effect the flags not the registers. JZ: jump if zero, if zero flag is set the instruction direction to a branched address. JMP: this is an unconditional jump instruction. DS: SI - MICROPROCESSORS INPUT: OUTPUT: D DS:SI -LEN - 0FH **FLOWCHART: Correlation of experimental** outcome with theoretical concept Start Initialization of DS and specified with string locations 4000h Compare the string character data with given register data '\$' ZF=? Increment BL and SI registers Uncondinational jump to the compare the data Move character length to the register Stop

	ALGORITHM:		
	1. Store the required string whose length is to be found.		
	2. Load the address of the string into DS:SI, set count as zero.		
	3. Load the byte to AL and compare with end of string character \$.		
	A If zero flag set we have reached the end of the string else		
	4. Il zero flag set, we have reached the end of the string, else		
	5 In an and the eddness to most leasting and in an and the event		
	5. Increment the address to next location and increment the count.		
	6. Go to step 2		
	7. Break the program to stop the execution.		
	PROGRAM:		
	ASSUME CS:CODE.DS:DATA		
	DATA SEGMENT		
	ORG 4000H		
	STR1 DB "MICROPROCESSORS\$"		
	LEN DB 01 DUP(0)		
	DATA ENDS		
	CODE SEGMENT		
	START: MOV AX,DATA		
	MOV DS,AX		
	LEA SI,STR1		
	MOV AL, '\$'		
	L2: CMP AL,[SI]		
	JZ LI		
	INC SL		
	INC SI		
	JIMP L2 L1. MOVIENDI		
	III MOVLEN, DL		
	CODE ENDS		
	EODE ENDS FND START		
Practical Application	1. Commercial applications like simple calculator taxa and remote care		
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars		
	etc.		
	2. And industrial wise large data processing and insurance companies.		
	3. Display boards , controlling signals in traffic light.		
Can vou design new			
experiment with this set up	Yes for dynamic allocation of a memory the length of the data has to be		
experiment with this set up	determined		
Is the experimental set up in			
working condition	yes		
-			
1			

Name of Experiment Reverse a given byte string **Importance of Experiment** To write an ALP program to reverse the given string byte using MASM software **Apparatus Required 1.Personal Computer** 2.MASM/TASM Software Installed **Inference** /Outcome LODSB: The instruction LODSB is used to load the AL register with the byte pointed by the base and offset address pair DS:SI, after loading the SI content is incremented or decremented automatically according to the direction flag (DF). **STOSB:** The instruction STOSB is used to store the content of AL register to the address pointed by the ES:DI pair, after loading the DI content is incremented or decremented automatically according to the direction flag (DF). **INPUT**: **DS: SI - MICROPROCESSORS** OUTPUT: ES: DI – SROSSECORPORCIM **FLOWCHART: Correlation of experimental** outcome with theoretical concept START Initialization of the data extra segmentations Offset register address are specified with SI and DI Clear the directional flag and load string byte Store the string the byte with set Directional flag CX=? STOP
	-
	ALGORITHM:
	1. Load the DS:SI and ES:DI with the source and destination
	addresses
	2 Load the count with the length of source string which is to be
	2. Load the count with the length of source string which is to be
	reversed and stored in destination.
	3. Set the destination address at the end of string by adding the
	length to the starting address.
	4. Clear direction flag and load the byte from source string using
	LODSB instruction.
	5 Set direction flag and store the byte to destination string using
	STOCD instruction
	6. Decrement the length count and if not zero go to step 2
	7. Break the program to stop the execution.
	PROGRAM:
	ASSUME CS:CODE,DS:DATA,ES:DATA
	DATA SEGMENT
	ORG 4000H
	STR1 DB "MICROPROCESSORS"
	LEN EQU (\$-STR1)
	ORG 5000H
	STR2 DB 20H DUP(00)
	DATA ENDS
	CODE SEGMENT
	START: MOV AX,DATA
	MOV DS,AX
	MOV ES,AX
	LEA SI,STR1
	MOV DI,OFFSET STR2
	ADD DI,LEN-I
	MOV CX,LEN
	STOR
	L OOP TI
	INT 03
	CODE ENDS
	FND START
Practical Application	1 Commercial applications like simple calculator toys, and remote cars
Tractical Application	1. Commercial applications like simple calculator, toys, and remote cars
	2. And industrial wise large data processing and insurance companies.
	3.Display boards ,controlling signals in traffic light .
Can you design new	
experiment with this set up	ves
is the experimental set up in	
working condition	yes

n ALP program to compare given two string bytes, and find out greater m using MASM software
Computer TASM Software Installed
The instruction CMPSB is used to compare each byte in their respective two strings, after comparison the compare takes decision to continue ompare based on prefix REPE or REPNE as if the two string bytes are ot equal to repeat the next byte comparison. The two string addresses into the DS:SI and ES:DI pair. The comparison breaks only if the s or the count is zero which is decremented with each iteration of n. DS: SI - RAMAKRISHNA ES: DI – RAMKUMAR BX- 01H
IARTS:

	START: MOV AX,DATA
	MOV DS,AX
	MOV AX,DAT
	MOV ES,AX
	MOV BL,00
	LEA SI,STR
	LEA DI,STR1
	MOV CX,LEN
	CLD
	REPE CMPSB
	JA TI
	JE EN
	INC BL
	TI: INC BL
	EN: MOV SI,OFFSET STAT
	MOV ES:[SI],BL
	INT 03
	CODE ENDS
	END START
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars etc.
FF	2 And industrial wise large data processing and insurance companies
	2. The industrial wise farge data processing and insurance companies.
	3. Display boards, controlling signals in traffic light.
	4.password checking
Can you design new	
experiment with this	Yes, in password checking program.
set un	
set up	
is the experimental set	
up in working	yes
condition	

Name of Experiment	
	ASCENDING ORDER
Importance of Experiment	To write an ALP program to sort the given string in ascending order using MASM software
Apparatus Required	Personal Computer MASM/TASM Software Installed
Inference /Outcome	 XCHG: the instruction XCHG is used to exchange the content of two register of byte or word size. CMP: the compare instruction works same as subtraction except that the result is only going to affect the flags not the registers. JBE: this instruction checks for CF=1 or ZF=1, if true then it branches to the location specified by location or else it goes with the following instruction. INPUT: DS: SI - D2H, 3EH, 76H, 12H, E3H, 44H, 2AH, 69H OUTPUT: DS: SI - 12H, 2AH, 3EH, 44H, 69H, 76H, D2H, E3H
Correlation of experimental outcome with theoretical	FLOWCHART:
concept	

	10. Terminate the program	
	PROCRAM.	
	ASSUME CS:CODE DS:DATA	
	DATA SEGMENT	
	ORG 3000H	
	STR DB 0D2H.3EH.76H.12H.0E3H.44H.2AH.69H	
	LEN EOU (\$-STR)	
	DATA ENDS	
	CODE SEGMENT	
	START: MOV AX,DATA	
	MOV DS,AX	
	MOV CL,LEN-1	
	UPP: MOV DL,CL	
	LEA SI,STR	
	UP: MOV AL,[SI]	
	CMP AL,[SI+1]	
	JBE TI	
	XCHG AL,[SI+1]	
	XCHG [SI],AL	
	TI: INC SI	
	DEC DL	
	JNZ UP	
	DEC CL	
	JNZ UPP	
	INT 03	
	CODE ENDS	
	END STAKT	
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars	
	etc.	
	2. And industrial wise large data processing and insurance companies.	
	3. Display boards .controlling signals in traffic light.	
	4 Can be used as part of sorting and searching in data structure.	
Con vou design new	i cui de abea as part or sorting and starting in com su starting.	
Call you uesign new		
experiment with this set up	yes	
Is the experimental set up in		
working condition	yes	
_		

Name of Experiment	DESCENDING ORDER	
Importance of Experiment	To write an ALP program to sort the given string in descending order using MASM software	
Apparatus Required	Personal Computer MASM/TASM Software Installed	
Inference /Outcome	 XCHG: the instruction XCHG is used to exchange the content of two register of byte or word size. CMP: the compare instruction works same as subtraction except that the result is only going to affect the flags not the registers. JAE: this instruction checks for CF=0 or ZF=1, if true then it branches to the location specified by location or else it goes with the following instruction. INPUT: DS: SI - D2H, 3EH, 76H, 12H, E3H, 44H, 2AH, 69H OUTPUT: DS: SI – E3H, D2H, 76H, 69H, 44H, 3EH, 2AH, 12H To observe the sorting of the given data in descending order and also check with practical results. 	
Correlation of experimental outcome with theoretical	FLOWCHART	
concept		

	PPOCPAM.
	ASSUME CS:CODE, DS:DATA
	DATA SEGMENT
	ORG 3000H
	STR DB 0D2H,3EH,76H,12H,0E3H,44H,2AH,69H
	LEN EQU (\$-STR)
	DATA ENDS
	CODE SEGMENT
	START: MOV AX,DATA
	MOV DS,AX
	MOV CL,LEN-1
	UPP: MOV DL.CL
	LEA SLSTR
	UP: MOV AL [SI]
	CMP AL [SI+1]
	IAF TI
	XCHG AL [SI+1]
	XCHG [SI] AI
	TI. INC SI
	DEC DI
	JNZ UP
	DEC CL
	JNZ UPP
	INT 03
	CODE ENDS
	END START
Practical Application	1. Commercial applications like simple calculator, toys, and remote
	cars etc.
	2 And industrial wise large data processing and insurance companies
	2. And industrial wise large data processing and insurance companies.
	3. Display boards, controlling signals in traffic light.
	4. Can be used as part of sorting and searching in data structure.
Can you design new	
experiment with this set up	ves
experiment with this set up	563
Is the experimental set up in	
working condition	ves
······································	

Name of Experiment	INSERT A CHARACTER IN TO GIVEN STRING
Importance of Experiment	
	To write an ALP program to insert a character in to a given string using MASM software
Apparatus Required	Personal Computer MASM/TASM Software Installed
Inference /Outcome	 LODSB: The instruction LODSB is used to load the AL register with the byte pointed by the base and offset address pair DS:SI, after loading the SI content is incremented or decremented automatically according to the direction flag (DF). STOSB: The instruction STOSB is used to store the content of AL register to the address pointed by the ES:DI pair, after loading the DI content is incremented or decremented automatically according to the direction flag (DF). LOOP: The loop instruction uses count register CX as the no of iterations the loop has to run. It decrements CX register and if zero it breaks the branching LEA: This instruction loads the register with effective address of the label. INPUT: DS: SI - MICROPROCESSORS OUTPUT: DS: SI - MICROPRO*CESSORS To observe the insert a character in to given string and also check with practical results.
Correlation of experimental	FLOWCHART:
outcome with theoretical	
concept	

		MOV ES,AX
		MOV CX,LEN
		LEA SI,MSG
		LEA DI,NEW
		MOV BL,07H
		CLD
	L2:	LODSB
		CMP CL,BL
		JNZ L1
		STOSB
		MOV AL,'*'
	L1:	STOSB
		LOOP L2
		INT 03
		CODE ENDS
	END START	
Practical Application	1. Comme	ercial applications like simple calculator, toys, and remote
	cars etc	
	2 And in	ustrial wise large data processing and insurance companies
	2. And in 2. Display	tustitat wise large data processing and insurance companies.
	5. Display	boards, controlling signals in traffic light.
	4. In data	base management, with addition of strings or characters.
Can you design new		
experiment with this set up	yes	
	-	
Is the experimental set up in		
is the experimental set up in		
working condition	yes	

Name of Experiment	DELETE A CHARACTER FROM A GIVEN STRING		
Importance of Experiment			
	To write an ALP program to delete a character from given string using		
	MASM software		
Apparatus Required	Personal Computer		
	MASM/TASM Software Installed		
Inference /Outcome	LODSB: The instruction LODSB is used to load the AL register with the		
	byte pointed by the base and offset address pair DS:SI, after loading the SI		
	content is incremented or decremented automatically according to the		
	direction flag (DF).		
	STOSB: The instruction STOSB is used to store the content of AL register		
	to the address pointed by the ES:DI pair, after loading the DI content is		
	incremented or decremented automatically according to the direction flag		
	(DF).		
	LOOP: The loop instruction uses count register CX as the no of		
	iterations the loop has to run. It decrements CX register and if zero it		
	breaks the branching		
	LEA: This instruction loads the register with effective address of the label.		
	Delete character: P		
	INPUT: DS: SI - MICROPROCESSORS		
	OUTPUT: DS: SI – MICROROCESSORS		
	To observe the delete a character from given string and also check with		
	nractical results character: P		
Correlation of	FLOWCHART:		
experimental outcome with			
theoretical concept			

	MOV AX.DAT
	MOV ES AX
	MOV CX LEN
	LEA SLMSG
	LEA DI NEW
	CLD
	L_2 CMP ΔL_2 P'
	INT I 1
	LODSB
	IMP L 2
	L1: STOSB
	INT 03
	CODE ENDS
	END START
Practical Application	1 Commercial applications like simple calculator toys, and remote cars
r ractical Application	1. Commercial applications like simple calculator, toys, and remote cars
	etc.
	2. And industrial wise large data processing and insurance companies.
	3. Display boards, controlling signals in traffic light.
	4 Can be used as editing tool for keyboard program
	4. Can be used as calling tool for Reyboard program.
Can you design new	
experiment with this set up	yes
Is the experimental set up	
in working condition	ves
in working condition	500

Name of Experiment	DISPLAY MESSAGE ON THE SCREEN		
Importance of Experiment	To write an ALP program to display the message on the screen using MASM software		
Apparatus Required	Personal Computer MASM/TASM Software Installed		
Inference /Outcome	INT 21H: the 256 interrupts of 8086 can be user defined with subroutine located in interrupt vector table. The INT21H is the interrupt number and entry in IVT for DOS services.Function 09H: for DOS services the function number 09H is used to display message to standard output display. The starting address of the 		
Correlation of experimental	FLOWCHART:		
outcome with theoretical			
concept	START		
	Initialization of the data segment		
	Offset message to default DX register		
	Interrupt functional call the message to be Display that is 09 the AH		
	Interrupt functional call interrupt the program		
	STOP		
	ALGORITHM:		
	1. Store The message to be displayed as DOS interrupt of display is		

	invoked.	
	2. The message address is to be loaded into DX.	
	3. The DOS function number for the display message on screen is	
	09h, this is to be always present in AH register	
	4. Invoke DOS service interrupt by INT 21h for message display.	
	5. The function 4Ch for DOS service lets the program to terminate	
	and return to DOS command prompt.	
	PROGRAM:	
	ASSUME CS:CODE,DS:DATA	
	DATA SEGMENT	
	MSG DB "knowledge is wealth", '\$'	
	DATA ENDS	
	CODE SEGMENT	
	START: MOV AX,DATA	
	MOV DS,AA MOV DY OFFSET MSG	
	MOV AH.09H	
	INT 21H	
	MOV AH,4CH	
	INT 21H	
	CODE ENDS	
	END START	
Practical Application	1. Commercial applications like simple calculator, toys, and remote	
	cars etc.	
	2. And industrial wise large data processing and insurance	
	companies.	
	3. Display boards, controlling signals in traffic light.	
	4. Used to develop complex OS operations and user programs to	
	send their required data for display.	
Can you design new		
experiment with this set up	ves	
	J - - - - - - - - - -	
Is the experimental set up in		
working condition	VAC	
working conuntion	yes	

Name of Experiment	READ STRING BYTE from KEYBOARD WITH ECHO
Importance of Experiment	To write an ALP program to read string byte from keyboard with echo using MASM software
Apparatus Required	Personal Computer MASM/TASM Software Installed
Inference /Outcome	 INT 21H: the 256 interrupts of 8086 can be user defined with subroutine located in interrupt vector table. The INT21H is the interrupt number and entry in IVT for DOS services. Function 09H: for DOS services the function number 09H is used to display message to standard output display. The starting address of the message is stored in DX register. Function 01H: the function 01H is used to read a character from standard input i.e the keyboard and the ASCII value of the key is stored in the AL register along with the echo of the key on standard output, monitor. To observe the read string byte from keyboard with echo and also check with practical results. INPUT: enter a string with last character as: MICROPROCESSORS (monitor screen entered by user)
Correlation of experimental outcome with theoretical concept	FLOWCHART:

Practical Application	 Commercial applications like simple calculator, toys, and remote cars etc. And industrial wise large data processing and insurance companies. Display boards, controlling signals in traffic light. Used to develop complex OS operations and user programs for every key typed from keyboard.
Can you design new experiment with this set up	yes
Is the experimental set up in working condition	yes

Name of Experiment	READ STRING BYTE from KEYBOARD WITHOUT ECHO
Importance of Experiment	To write an ALP program to read string byte from keyboard without echo using MASM software
Apparatus Required	Personal Computer MASM/TASM Software Installed
Inference /Outcome	 INT 21H: the 256 interrupts of 8086 can be user defined with subroutine located in interrupt vector table. The INT21H is the interrupt number and entry in IVT for DOS services. Function 09H: for DOS services the function number 09H is used to display message to standard output display. The starting address of the message is stored in DX register. Function 08H: the function 08H is used to read a character from standard input i.e the keyboard and the ASCII value of the key is stored in the AL register, there will be no echoing of the key to standard output. INPUT: enter a string with last character as: MICROPROCESSORS OUTPUT: DS:SI (monitor screen entered by user) To observe the read string byte from keyboard without echo and also check with practical results.
Correlation of	FLOWCHART:
experimental outcome	
with theoretical concent	
with theoretical concept	

	MOV [S1] AI		
	CMD AL : 0/2		
	JINZ UP		
	MOV AH,4CH		
	INT 21H		
	CODE ENDS		
	END START		
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars		
	etc.		
	2. And industrial wise large data processing and insurance companies.		
	3. Display boards, controlling signals in traffic light.		
	4. Used to develop complex OS operations and user programs for every		
	key typed from keyboard in a password program.		
Can you design new			
experiment with this set	Yes, as part of password program.		
un			
up			
Is the experimental set			
up in working condition	ves		

Name of Experiment	STEPPER MOTOR INTERFACE
Importance of Experiment	To write an ALP program to rotate the stepper motor clock and anti clockwise directions
Apparatus	1.ESA 86/88E V3 TRAINER BOARD.
Required	2.Key board
	3.Power supply
	4.8255 Interface card
	5.Stepper motor card
Inference	
/Outcome	To observe the stepper motor interface with 8086 and also check with practical results clock and antilock wise directions

Page 25

	<image/>
	Power supply unit Address 8086 Microprocessor Data PPI Port A ABCD selection lines Stepper Motor Interface
Correlation of experiment al outcome with theoretical concept	PROGRAM: MOV AL,80 MOV DX,0FFE6 OUT DX,AL MOV AL,11 MOV DX,0FFE0 AGAIN: OUT DX,AL MOV CX,0FFF BACK: LOOP BACK ROL AL,01 JMP AGAIN INT 03
Practical Application Can you design new experiment with this set up	 Commercial applications like toys, and remote cars etc. In robotics.

Is the	
experiment	yes
al set up in	
working	
condition	

	1			
Name of Experiment	TRAFFIC LIGHT INTERFACE			
Importance of Experiment	To write an ALP program to interface traffic light system to 8086 through 8255			
Apparatus Required	 1.ESA 86/88E V3 TRAINER BOARD. 2.Key board 3.Power supply 4.8255 Interface card 5.Traffic light card 			
Inference (Outcome	825	5 port map to traffic lights		1
/Outcome		DIRECTION	LED	PORT LINE
		SOUTH	RED(S_r)	PA3
			AMBER(S_a)	PA2
			LEFT(S_lt)	PA0
			STRAIGHT(S_st)	PC3
			RIGHT(S_ri)	PA1
			PEDESTRIAN(S_pd)	PC6
		EAST	RED	PA7
			AMBER	PA6
			LEFT	PA4
			STRAIGHT	PC2
			RIGHT	PA5
			PEDESTRIAN	PC7
		NORTH	RED	PB3
			AMBER	PB2
			LEFT	PB0
			STRAIGHT	PC1
			RIGHT	PB1
			PEDESTRIAN	PC4
		WEST	RED	PB7
			AMBER	PB6
			LEFT	PB4
			STRAIGHT	PC0
			RIGHT	PB5
			PEDESTRIAN	PC5

Page 26

Correlation	PROGRAM	
experiment		MOV AL,80
al outcome		OUT DX,AL
with		MOV SL,000
theoretical		UP: MOV DX,0FFE0
concept		MOV AL,[SI] OUT DX AL
		MOV DX,0FFE2
		MOV AL,[SI]01
		OUT DX,AL MOV DX.0FFE4
		MOV AL,[SI]02
		OUT DX,AL DEC BI
		JZ TT
		MOV DL,BL
		AND DL,01 JZ NT
		MOV BH,80
		CALL DELAY IMP ST
	NT:	MOV BH,10
		CALL DELAY
		JMP UP
	TT:	MOV BH,80
		CALL DELAY IMP TOP
		INT 03
	DFI AV.	MOV CX OFFE
		BACK: NOP
		NOP
		DEC BH
		JNZ DELAY
		RET

Practical	1. Display boards, controlling signals in traffic light.
Application	
Can you	
design new	yes
experiment	
with this set	
up	
Is the	
experiment	yes
al set up in	
working	
condition	

Name of Experiment	SEVEN SEGMENT DISPLAY INTERFACE
Importance of Experiment	To write an ALP program to interface keyboard and display 8086 through
Apparatus Required	 ESA 86/88E V3 TRAINER BOARD. Key board Power supply 8255 Interface card seven segment display interface card
Inference /Outcome	<image/>

Page 27

	<image/>	<image/>
Correlation	PROGRAM:	
of	ORG 2000H	· Initialise segment reg
experimenta	MOV DS,AX	, muuno ocenen reg.
1 outcome	MOV DX,FFE6H	;Configure all 8255 ports
theoretical	MOV AL, 80H OUT DX AI	; as output.
concept	UUT DA,AL	
T	LOOP4: MOV SI,2100H	;Initialise pointer
	MOV CL, 05H	;set counter for 5 groups.
	LOOP3: MOV CH,04H LOOP2: MOV BL 08H	;4 characters/group :8 segments/character
		,
	MOV AL,[SI]	;get the display code
	INC SI	;Increment pointer
	MOV DX,FFE2H	, bet i data on
	OUT DX,AL	;o/p bit to portb
	MOV AH,AL MOV AL.01H	;o/p clock to
	MOV DX,FFE4H	;shift register
	OUT DX,AL	
	OUT DX,AL	
	MOV AL,AH	
	DEC BL INZ LOOP1	;all bits over?
	DEC CH	;all characters over?
	JNZ LOOP2	;no, continue
	CALL DELAY DEC CL	all groups over?
	JNZ LOOP3	;no, continue
	JMP SHORT LOOP4	
	DELAY: PUSH CY	delay subroutine
	MOV CX,0	,ueray subroutine
	L1: LOOP L1	

	L2: LUUP L2		
	POP CX		
	RET		
	;Display code table		
	ORG 2100H		
	STRING: DB 0FFH,0FFH,0FFH		
	DB 086H,0C7H,086H,0C6H		
	DB 087H,0DEH,0C0H,0BFH		
	DB 092H,091H,092H,0BFH		
	DB 087H,086H,0C8H,092H		
	END		
Dere effect	Diselas handa anda lina singla in traffic linta		
Practical	Display boards, controlling signals in traffic light.		
Application			
Can you			
design new	yes		
experiment			
with this set			
up			
Is the			
experimenta	yes		
l set up in			
working			
condition			

Name of Experiment LCD INTERFACING Importance of To write an ALP program to interface LCD interfacing Experiment Apparatus Required 1. ESA 86/88E V3 TRAINER BOARD. 2. Key board 3. Power supply 4. Lcd Interface card INPUT: A, B, C, D, E... (Keyboard key pressing) Inference /Outcome OUT PUT: A, B, C, D, E...(monitor screen)

Page 28

	To observe the lcd interfacing with 8086 also show the key being pressed.		
Correlation	PROGRAM:		
0f experiments	MOV SP,2200H		
l outcome	JMP SHORT START		
with	MSG1: DB 'ESA LCD INTERFACE',00H MSG2: DB 'Key Pressed = ',00H		
theoretical	STADT. CALLINITICD		
concept	LEA DX,MSG1		
	MOV SI,DX		
	MOV AL,80H CALL CMDWR		
	CALL DISPM		
	AGAIN: MOV AL,COH		
	LEA DX,MSG2		
	MOV SI,DX		
	CALL DISPM CALL FAR 0FE00:00A9H		
	CMP AL,1BH		
	JE EXII CALL DATAWR		
	JMP SHORT AGAIN		
	EATT: INT 5		
	INITLCD: MOV DX,0FFE6H		
	OUT DX,AL		
	MOV AL,30H		
	MOV AL,30H		
	CALL CMDWR		
	MOV AL,30H CALL CMDWR		
	MOV AL,38H		
CALL CMDWR MOV AL,01H CALL CMDWR MOV AL.02H			
--	--		
CALL CMDWR MOV AL,06H CALL CMDWR MOV AL,0CH CALL CMDWR RET			
DISPM: MOV AL,[SI] CMP AL,00H JE END INC SI CALL DATAWR JMP SHORT DISPM END: RET			
CMDWR: PUSH AX MOV DX,0FFE2H MOV AL,02H OUT DX,AL			
MOV AL,00H OUT DX,AL			
MOV AL,04H OUT DX,AL			
MOV DX,0FFE0H POP AX OUT DX,AL CALL DELAY			
MOV DX,0FFE2H MOV AL,00H OUT DX,AL			
MOV AL,02H OUT DX,AL RET			
DATAWR: PUSH AX MOV DX,0FFE2H MOV AL,03H OUT DX,AL			
MOV AL,01H OUT DX,AL			
MOV AL,05H OUT DX,AL			
MOV DX,0FFE0H POP AX OUT DX,AL CALL DELAY			
MOV DX,0FFE2H MOV AL,01H OUT DX,AL			
MOV AL,03H OUT DX,AL RET			
DELAY: MOV CX,03FFH			

	DY: LOOP DY
	RET
	END
Practical	Commercial applications like simple calculator, toys, and remote cars etc.
Application	Display boards, controlling signals in traffic light.
Can you	
design new	yes
experiment	
with this set	
up	
Is the	
experimenta	yes
l set up in	
working	
condition	

Signature of Faculty Member

Page 29

START: CALL FAR 0FE00:0031H ;Newline LEA DX,MES MOV AX,DX CALL FAR 0FE00:0013H ;Call for displaying the message CALL KSCAN CALL DELAY JMP SHORT START KSCAN: MOV CL,01H MOV BH,0H NEXT: MOV AL,CL MOV DX,0FFE2H ;Writing into Port B of 8255 OUT DX,AL MOV DX,0FFE0H ;Reading from Port A of 8255 IN AL,DX AND AL,0FH MOV AH,AL CMP AL,0H JNE KEYCODE CONT: ROL CL,1 CMP CL,10H ;Compare upto Highest scan line JE KSCAN BH,04H ADD JMP NEXT KEYCODE:MOV BL,0H MOV AL,AH SHIFT: SHR AL,1 CMP AL,00H JE ROW INC BL JMP SHIFT ROW: ADD BH,BL MOV AL, BH CALL FAR 0FE00:0052H RET DELAY: PUSH CX MOV CX,00H ; Delay routine DLY: LOOP DLY POP CX RET END **Practical** 1. Commercial applications like simple calculator, toys, and remote cars etc. Application Display boards, controlling signals in traffic light. 2. Can you design new yes experiment with this set Is the experimenta yes l set up in working condition

up

Name of	ELEVATOR INTERFACE DESIGN
Experiment	
Importance of Experiment	To write an ALP program to interface elevator to 8086 through 8255 and study its function.
Apparatus Required	 1.ESA 86/88E V3 TRAINER BOARD. 2.Key board 3.Power supply 4. elevator interface model.
Inference /Outcome	<image/>

	1		
		CMP AL,0FH JZ LOOP2	
	FINDF: FOUND:	MOV SI,00H ROR AL,01H JNC FOUND INC SI JMP SHORT FINDF MOV AL,[SI]2100H CMP AL,AH	;If requested floor found ; Otherwise,continue search ; Get requesting floor code ; Compare with current floor
	CLEAR:	JB GODN MOV AL,[SI]2104H MOV DX,0FFE0H OUT DX,AL	; If it need to g DOWN
	GOUP:	JMP SHORT LOOP1 CALL DELAY INC AH	; Elevator goes UP by one LED
	GODN:	XCHG AL,AH OR AL,0F0H MOV DX,0FFE0H OUT DX,AL AND AL,0FH XCHG AH,AL CMP AL,AH JNZ GOUP JMP SHORT CLEAR CALL DELAY DEC AH XCHG AH,AL OR AL,0F0H MOV DX,0FFE0H OUT DX,AL AND AL,0FH XCHG AL,AH CMP AL,AH JNZ GODN JMP SHORT CLEAR	; Elevator goes DOWN by one LED
	DELAY: HR1: HR2:	MOV CX,0800H LOOP HR1 LOOP HR2 RET	; Delay between glow of successive LEDs
	ORG 21	00H	
	VALUE1: DB VALUE2: DB	00H,03H,06H,09H ; Po 0E0H,0D3H,0B6H,79H	osition codes for floors ; clear code+position dode for all floors
Practical Application	1. Commercia building mate 2. Used to car	ally used in buildings fo erial. rry large loads in to boa	or lateral transport of people and in construction to carry rd in shipping.
Can you design new experiment with this set up	yes		
Is the experimenta l set up in working condition	yes		

Page	31
гаge	21

Name of Experiment	8051 MICRO CONTROLLER PARALLEL PORT READING
Importance of Experiment	To write an ALP program to read parallel port and send the data to parallel port of the 8051 micro controller.
Apparatus Required	1. ESA 8051E V3 TRAINER BOARD. 2.Key board 3.Power supply
Inference /Outcome	To observe the 8051 micro controller parallel port reading and also check with practical results.
Correlation of experimenta l outcome with theoretical concept	

	ALGORITHME 1. The lower nibble of port1 is made as inputs by giving 1bit to the corresponding pins. 2. The higher nibble is used as output lines to LED's. 3. The closed or open switch to GND on input lines is read into the port. 4. The switch status is displayed on the output LED lines. 5. If the switch is closed the LED glows else LED is in off state. PROGRAM:	
	JMP START ORG 1000H START: ORL P1,#0FH MOV A,P1 SWAP A MOV P1,A SJMP START	
	END	
Practical Application	1. Commercial applications like simple calculator, toys, and remote cars etc.	
Application	2. And industrial wise large data processing and insurance companies. 3.Display boards ,controlling signals in traffic light .	
Can you	1	
design new	yes	
experiment		
with this set		
up Ta tha		
15 UIC experiments	ves	
l set up in working condition		

Name of Experiment	MODES OF TIMER OF 8051 CONTROLLER
Importance of Experiment	To write an ALP program to run the timer of 8051 in different modes
Apparatus Required	1.ESA 8051E V3 TRAINER BOARD. 2.Key board 3.Power supply
Inference /Outcome	To observe the 8051 micro controller parallel port reading and also check with practical results
Correlation of experimental outcome with theoretical concept	<image/>

Page 32

AL GORITHM:
 The mode of timer 0 is mode 0 and timer 1 in mode 1. Set the bits of port P1.0 and P1.1. Set the timers overflow flags. Load the timer count value to timer0 registers TL0 and TH0. Set the timer0 to run state by clearing the overflow flag and run flag. Check for overflow flag to set, if not set goto step 7. Load the timer count value to timer1 registers TL1 and TH1. Set the timer 1 to run state by clearing the overflow flag and run flag. Check for overflow flag to set, if not set goto step 7. Load the timer count value to timer1 registers TL1 and TH1. Set the timer 1 to run state by clearing the overflow flag and run flag. Check for overflow flag to set, if not set goto step 5. PROGRAM: UP: MOV TMOD,#10H SETB P1.0 SETB P1.1 SETB TF0 SETB TF1
TIMERO: JNB TFO,TIMER1
CLR TRO CLR TFO CPL P1.0 MOV TLO,#0FFH MOV THO,#0F0H SETB TRO
TIMER1: JNB TF1, TIMERO
CLR TR1
CLR IF1 CPI P1 1
MOV TL1,#0FFH
MOV TH1,#0F0H
SETB TR1
SJMP TIMERU END
1. Commercial applications like simple calculator, toys, and remote cars etc.

Practical

Application	2. Display boards, controlling signals in traffic light .
Can you	
design new	yes
experiment	
with this set	
up	
Is the	
experimental	yes
set up in	
working	
condition	

Signature of Faculty Member